
THIN File System User Guide

Copyright HCC Embedded 2018 1 www.hcc-embedded.com

THIN File System User

Guide

Version 4.20

For use with THIN File System versions 5.05 and above

Date: 16-Feb-2018 10:53

All rights reserved. This document and the associated software are the sole property of HCC

Embedded. Reproduction or duplication by any means of any portion of this document without the

prior written consent of HCC Embedded is expressly forbidden.

HCC Embedded reserves the right to make changes to this document and to the related software at

any time and without notice. The information in this document has been carefully checked for its

accuracy; however, HCC Embedded makes no warranty relating to the correctness of this document.

THIN File System User Guide

Copyright HCC Embedded 2018 2 www.hcc-embedded.com

Table of Contents

System Overview __ 4

Introduction ___ 5

Feature Check ___ 7

Packages and Documents __ 8

Packages __ 8

Documents __ 8

Change History __ 9

Source File List ___ 10

API Header Files __ 10

Configuration Files ___ 10

Version File __ 10

Test File ___ 10

THIN File System ___ 11

Configuration Options __ 12

General Options __ 12

Options for Testing __ 14

Hints and Tips for Optimization ___ 14

Merging files __ 14

Power Consumption __ 14

Safety ___ 14

Drive Format ___ 16

Completely Unformatted Media ___ 16

Master Boot Record (MBR) __ 16

Boot Sector Information ___ 16

Application Programming Interface ___ 17

Module Management ___ 17

fs_init __ 18

fs_delete ___ 19

File System API ___ 20

Volume Management ___ 21

f_initvolume __ 22

f_delvolume __ 24

f_format ___ 25

f_hardformat __ 27

f_getlabel __ 29

f_setlabel __ 30

f_getfreespace __ 31

f_getserial __ 33

Directory Management __ 34

f_mkdir __ 35

f_chdir __ 36

f_rmdir __ 37

THIN File System User Guide

Copyright HCC Embedded 2018 3 www.hcc-embedded.com

f_getcwd ___ 38

File Access ___ 39

f_open __ 40

f_close __ 42

f_flush ___ 43

f_read ___ 44

f_write ___ 45

f_getc ___ 46

f_putc ___ 47

f_eof __ 48

f_seteof ___ 49

f_tell __ 50

f_seek ___ 51

f_rewind ___ 52

f_truncate __ 53

File Management ___ 54

f_delete ___ 55

f_findfirst ___ 56

f_findnext __ 58

f_rename __ 60

f_getattr ___ 61

f_setattr ___ 62

f_gettimedate ___ 63

f_settimedate ___ 65

Types and Definitions __ 67

F_FILE: File Handle __ 67

F_FIND __ 67

File Attribute Settings ___ 68

F_SPACE __ 68

Error Codes __ 69

Integration ___ 71

Requirements __ 71

Stack Requirements __ 71

Real Time Requirements ___ 71

OS Abstraction Layer __ 71

PSP Porting __ 72

Test Routines __ 73

Running Tests __ 73

Test Summary __ 74

THIN File System User Guide

Copyright HCC Embedded 2018 4 www.hcc-embedded.com

1 System Overview
This chapter contains the fundamental information for this module.

The component sections are as follows:

Introduction – describes the main elements of the module.

Feature Check – summarizes the main features of the module as bullet points.

Packages and Documents – the section lists the packages that you need in order to use Packages

this module. The section lists the relevant user guides.Documents

Change History – lists the earlier versions of this manual, giving the software version that each

manual describes.

THIN File System User Guide

Copyright HCC Embedded 2018 5 www.hcc-embedded.com

1.1 Introduction

This guide is for those who want to implement a full-featured FAT file system, optimized to use minimal ROM

/RAM.

The THIN file system makes use of media drivers to access one or more storage media to execute the

requested storage operation. THIN can access any combination of storage device types that conform to the

.HCC Media Driver Interface Specification

The following diagram illustrates the structure of the file system software.

The file system's Application Programming Interface (API) is the interface used by the user application to

access the THIN file system and the attached storage media.

Note: HCC's SuperTHIN file system is always supplied with THIN. SuperTHIN has its own manual.

https://doc.hcc-embedded.com/display/mediadrivers/Media+Driver+Interface+Guide

THIN File System User Guide

Copyright HCC Embedded 2018 6 www.hcc-embedded.com

The THIN file system:

Is a FAT-compatible file system designed for embedded microcontrollers with limited system

resources (restrictions on the available code space or available RAM).

Has a code size of from 4 to 12.5KB and requires from 1.5 to 2KB of RAM.

Provides a balance of speed against memory needed, with options that allow you to make

performance trade-offs using available resources. This permits a full file system to be run on a low

cost microcontroller with limited resources.

Allows developers to attach PC-compatible media like SD cards or pen drives to their systems. It is

compatible with media such as SD/MMC and Compact flash cards.

Can use any media driver that conforms to the . The HCC Media Driver Interface Specification

system is limited to using only a single media driver at any time; before a second media driver can be

used, the first volume must be deleted.

Note:

For developers who have even more limited resources, HCC Embedded’s SuperTHIN file

system is the recommended option.

For developers who do not have such limited resources, but have >20KB for code and >5KB for

RAM, HCC Embedded’s FAT file system is the recommended option.

Although every attempt has been made to simplify the system’s use, you need a good

understanding of the requirements of the systems you are designing in order to obtain the

maximum practical benefits. HCC Embedded offers hardware and firmware development

consultancy to help developers implement a flash file system.

https://doc.hcc-embedded.com/display/mediadrivers/Media+Driver+Interface+Guide

THIN File System User Guide

Copyright HCC Embedded 2018 7 www.hcc-embedded.com

1.2 Feature Check

The main features of the system are the following:

Conforms to the HCC Advanced Embedded Framework.

Designed for integration with both RTOS and non-RTOS based systems.

Code size is 4 - 12.5KB.

RAM usage is 1.5 - 2KB.

Uses ANSI ‘C’.

Reentrant.

Supports long filenames.

Supports multiple open files.

Test suite is provided.

Supports zero copy.

FAT 12/16/32-compatible.

THIN File System User Guide

Copyright HCC Embedded 2018 8 www.hcc-embedded.com

1.3 Packages and Documents

Packages

This table lists the packages that need to be used with this module, and also optional modules that may

interact with this module, depending on your system's design:

Package Description

hcc_base_doc This contains the two guides that will help you get started.

fs_thin The THIN file system package described in this manual.

fs_sthin SuperTHIN - this is always supplied with THIN, although THIN does not need it.

media_drv_base The Media Driver base package that provides the base for all media drivers that

attach to the file system.

psp_template_base The base Platform Support Package (PSP).

Additional packages

Other packages may also be provided to work with THIN. Examples include specific media drivers for

particular targets, and Platform Support Package (PSP) extensions for particular targets.

Documents

For an overview of HCC file systems and guidance on choosing a file system, see on Product Information

the main HCC website.

Readers should note the points in the on the HCC documentation website.HCC Documentation Guidelines

HCC Firmware Quick Start Guide

This document describes how to install packages provided by HCC in the target development environment.

Also follow the when HCC provides package updates.Quick Start Guide

HCC Source Tree Guide

This document describes the HCC source tree. It gives an overview of the system to make clear the logic

behind its organization.

HCC Media Driver Interface Specification

This document describes the media driver interface.

HCC THIN File System User Guide

This is this document.

https://www.hcc-embedded.com/embedded-systems-software-products/file-system/fat-file-systems
https://doc.hcc-embedded.com/display/HCCDocRoot/HCC+Documentation+Guidelines

THIN File System User Guide

Copyright HCC Embedded 2018 9 www.hcc-embedded.com

1.4 Change History

This section describes past changes to this manual.

To view or download earlier manuals, see .File System PDFs

For the history of changes made to the package code itself, see .History: fs_thin

The current version of this manual is 4.20. The full list of versions is as follows:

Manual

version

Date Software

version

Reason for change

4.20 2018-02-16 5.5 Changed text on date and time formats in functions

 and .f_gettimedate() f_settimedate()

4.10 2017-08-31 5.5 Corrected list.Packages

4.00 2017-06-23 5.5 New format.Change History

3.90 2016-04-21 5.4 Added function group descriptions to API.

3.80 2016-03-21 5.4 Various small changes.

3.70 2015-03-13 5.4 Added section.Change History

3.60 2014-10-24 5.2 Added section.Options for Testing

3.50 2014-08-20 5.2 Reorganized .System Overview

3.40 2014-05-23 5.1 First online version.

https://doc.hcc-embedded.com/display/HCCDocRoot/File+System+PDFs#FileSystemPDFs-THINFileSystem
https://doc.hcc-embedded.com/display/HCCDocRoot/History%3A+fs_thin

THIN File System User Guide

Copyright HCC Embedded 2018 10 www.hcc-embedded.com

2 Source File List
This section describes all the source code files included in the system. These files follow the HCC

Embedded standard source tree system, described in the . All references to file HCC Source Tree Guide

pathnames refer to locations within this standard source tree, not within the package you initially receive.

Note: Do not modify any files except the configuration files.

2.1 API Header Files

These files are in the directory :src/api

File Description

api_thin.h This should be included by any application using the system. For

details of the functions, see .Application Programming Interface

api_thin_test.h This defines the test setup. For details, see .Test Routines

2.2 Configuration Files

These files in the directory contain all the configurable parameters of the system. Configure src/config

these as required. For details of these options, see .Configuration Options

File Description

config_thin.h Contains the configurable system parameters.

config_thin_test.h Contains the configurable test parameters.

2.3 Version File

The file contains the version number of this module. This version number is src/version/ver_thin.h

checked by all modules that use this module to ensure system consistency over upgrades.

2.4 Test File

The test code is in the file . For details, see .src/fat_thin/test/test.c Test Routines

https://doc.hcc-embedded.com/display/STQSG/Source+Tree+Guide

THIN File System User Guide

Copyright HCC Embedded 2018 11 www.hcc-embedded.com

2.5 THIN File System

These files are in the directory . .src/fat_thin/common These files should only be modified by HCC

File Description

dir.c Directory handling functions without long filenames.

dir.h Header file for short filename directory functions.

dir_lfn.c Directory handling functions with long filenames.

dir_lfn.h Header file for long filename directory functions.

drv.c Low level driver interface functions.

drv.h Header file for low level driver interface functions.

f_rtos.c RTOS functions.

f_rtos.h Header file for RTOS functions.

fat.c FAT file system general functions.

fat.h Header file for FAT file system general functions.

file.c File manipulation functions.

file.h Header file for file manipulation functions.

util.c General utility functions.

util.h Header file for general utility functions.

util_lfn.c General utility functions for long filenames.

util_lfn.h Header file for general utility functions for long filenames.

util_sfn.c General utility functions for short filenames.

util_sfn.h Header file for general utility functions for short filenames.

volume.c Volume manipulation functions.

volume.h Header file for volume manipulation functions.

THIN File System User Guide

Copyright HCC Embedded 2018 12 www.hcc-embedded.com

3 Configuration Options
The options are in two files, and .src/config/config_thin.h src/config/config_thin_test.h

3.1 General Options

Set the system configuration options in the file . This section lists the available src/config/config_thin.h

configuration options and their default values.

The options listed below allow you to focus the file system to do only what is required.

F_SECTOR_SIZE

The sector size of the target media, for use when formatting. The default is 512.

RTOS_SUPPORT

Set this to 1 to enable RTOS support. The default value is 0. The OS Abstraction Layer (OAL) is only used

when this is enabled.

F_LONGFILENAME

This enables/disables long filename support. The default is 0.

Long filename support generates substantially more code in the file system. It also requires more RAM

since the longer names have to be accommodated. Among other things, the stack sizes of applications that

call the file system must be increased, and more checking is required. Additionally, note that using long

filenames may place a significant CPU overhead on a small device because of the more complex handling

required.

The maximum long filename space required by the standard is 260 bytes. As a consequence, each time a

long filename is processed, large areas of memory must be available. Depending on your application, you

can reduce the size of F_MAXPATH and F_MAXLNAME to reduce the resource usage of the system.

The most critical function for long filenames is which must keep two long filenames on the f_rename(),

stack as well as additional structures for handling it.

Note: Do not modify as this is used to process the files on the media which the structure F_LFNINT

may be created by other systems.

Choose one of the following sets of source files:

dir.c, util_sfn.c – contains the THIN file system without long filename support. If long filenames exist

on the media, the system will ignore the long name part and use only the short name.

dir_lfn.c, util_lfn.c – contains the THIN file system with complete long filename support.

THIN File System User Guide

Copyright HCC Embedded 2018 13 www.hcc-embedded.com

FATBITFIELD_ENABLE

This enables/disables the system's keeping of a bitmap record of the FAT clusters which do not contain any

free clusters. The default is 0.

If it is enabled, this option uses more code and significantly more RAM. The actual amount depends on the

size of the device you attach and the FAT type. But this option also greatly accelerates the search for a free

cluster in the FAT, particularly on a full card. This results in far fewer FAT accesses and hence reduced

power consumption.

Note: If FATBITFIELD_ENABLE is enabled, will be called from to psp_malloc() f_getvolume()

allocate space for this table.

F_MAXFILES

The maximum number of files that may be open simultaneously. The default is 1.

If long filenames are used F_MAXFILES must be one greater than the number of files that may be open

simultaneously. So if long filenames are enabled F_MAXFILES has a minimum value of 2.

Limiting the maximum number of files that can be open reduces the RAM requirement of the system. For

every additional file allowed to be open, 0.5KB is added to the RAM requirement.

F_MAXPATH

The maximum path length that the file system handles if long filenames are NOT used. The default value is

64.

The worst case value for this on a PC is 260, but in practice on embedded devices much smaller and often

predictable path lengths can be relied upon. Using a smaller maximum path length reduces the RAM

requirements of the system.

F_MAXLNAME

The maximum path length that the file system will handle if long filenames are used. The default is 64. The

worst case value on a PC is 260 but in practice on embedded devices much smaller and often predictable

path lengths can be relied upon. Using a smaller maximum path length reduces the RAM requirements of

the system.

F_FILE_CHANGED_EVENT

Set this to 1 if you want to make a file state change an event. The default is 0.

THIN File System User Guide

Copyright HCC Embedded 2018 14 www.hcc-embedded.com

3.2 Options for Testing

Set the configuration options for testing in the file . This section lists the src/config/config_thin_test.h

available configuration options and their default values. See for full details.Test Routines

F_MAX_SEEK_TEST

The maximum size for a seek test. The default value is 16384.

The available values are: 128, 256, 512, 1024, 2048, 4096, 8192, 16384, and 32768.

F_FAT_TYPE

The media type for testing. The default value is F_FAT32_MEDIA.

The available values are: F_FAT12_MEDIA, F_FAT16_MEDIA, and F_FAT32_MEDIA.

3.3 Hints and Tips for Optimization

This section outlines other ways to improve performance.

Merging files

Some compilers can perform better size optimization if all the code is contained in one file. Particularly on

smaller processors, it is useful to find common pieces of code and merge them into a single call. There are

two approaches to this:

Combine all the source files in into a single file.src/fat_thin/common

Create a master file that contains just a list of the source files to include. The compiler then treats the

files as a single source.

Power Consumption

To use the minimum power when accessing your flash device, it is important to minimize the number of

accesses. If you can design the application so that a large file is created before use, and then you modify

the file using only , this ensures that there is no need to update the FAT each time a new block is f_seek()

appended. This can be a useful mechanism for conserving power in a data logging application.

Safety

FAT file systems are by design not power fail-safe. If power is lost at the “wrong” moment, part or all of the

file system can be lost. Normally part or all of the lost data can be recovered using PC-based disk recovery

software. One way to reduce the risk of losing the whole device is to put files only in subdirectories; that is,

do not use the root directory for storing files.

THIN File System User Guide

Copyright HCC Embedded 2018 15 www.hcc-embedded.com

Note: THIN is vulnerable to corruption only when files are being written, in particular when the FAT or

directory entries are being updated.

THIN File System User Guide

Copyright HCC Embedded 2018 16 www.hcc-embedded.com

4 Drive Format
THIN handles most of the features of a FAT file system with no need for explanation of the underlying

issues. However, this section describes some areas which you do need to understand.

Removable media may be formatted in three different ways:

Completely unformatted.

Master Boot Record (MBR).

Boot Sector Information only.

The following sections describe how the system handles these three situations.

4.1 Completely Unformatted Media

An unformatted drive is not useable until it has been formatted. Most flash cards are pre-formatted, whereas

hard disk drives tend to be unformatted when delivered. When is called, the drive is formatted f_format()

with Boot Sector Information. This is exactly the same as if had been issued at any time.f_hardformat()

The format of the file medium is determined by the number of clusters on it. Information about the

connected device is given to the system from the call, from which the number of available f_getphy()

clusters on the device is calculated.

Refer to the and functions for a description of how to choose the format type f_hardformat() f_format()

(FAT12/16/32).

4.2 Master Boot Record (MBR)

As standard, the file system does not hard format a card with an MBR but with Boot Sector Information. A

hard format removes the MBR information.

When a device with an MBR is inserted, it is treated as though it has just one partition (the first in the

partition table).

4.3 Boot Sector Information

If is called, the card is always formatted with the Boot Sector Information table in the first f_hardformat()

sector.

THIN File System User Guide

Copyright HCC Embedded 2018 17 www.hcc-embedded.com

5 Application Programming Interface
This section describes all the Application Programming Interface (API) functions. It includes all the functions

that are available to an application program.

5.1 Module Management

The functions are the following:

Function Description

fs_init() Initializes the file system and allocates the required resources.

fs_delete() Releases resources allocated during the initialization of the file

system.

THIN File System User Guide

Copyright HCC Embedded 2018 18 www.hcc-embedded.com

fs_init

Use this function to initialize the file system. Call it once at start-up.

Data areas for the file system to use are allocated at compile time, based on the settings for each volume in

the file.config_thin.h

Format

unsigned char fs_init (void)

Arguments

Argument

None.

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void main()

{

 fs_init(); /* Initialize file system */

 .

 .

 .

}

THIN File System User Guide

Copyright HCC Embedded 2018 19 www.hcc-embedded.com

fs_delete

Use this function to release resources allocated during the initialization of the file system.

Note: All volumes must be deleted before this function is called.

Format

unsigned char fs_delete (void)

Arguments

Argument

None.

Return values

Return value Description

F_NO_ERROR Successful execution.

F_ERR_BUSY A volume has not been deleted and this prevented the successful completion of this

function.

THIN File System User Guide

Copyright HCC Embedded 2018 20 www.hcc-embedded.com

5.2 File System API

The functions are divided into four groups: volume management, directory management, file access, and file

management.

THIN File System User Guide

Copyright HCC Embedded 2018 21 www.hcc-embedded.com

Volume Management

The functions are the following:

Function Description

f_initvolume() Initializes the volume.

f_delvolume() Frees resources associated with the volume.

f_format() Formats the specified drive.

f_hardformat() Formats the drive, ignoring current format information. All open

files are closed.

f_getlabel() Returns the label as a function value.

f_setlabel() Sets a volume label.

f_getfreespace() Fills a structure with information about the drive space usage: total

space, free space, used space, and bad (damaged) size.

f_getserial() Gets the volume’s serial number.

THIN File System User Guide

Copyright HCC Embedded 2018 22 www.hcc-embedded.com

f_initvolume

Use this function to initialize the volume.

This works independently of the status of the hardware; that is, it does not matter whether a card is inserted

or not.

Format

unsigned char f_initvolume (

 F_DRIVERINIT initfunc,

 unsigned long driver_param)

Arguments

Argument Description Type

initfunc The initialization function. F_DRIVERINIT

driver_param The driver parameter. unsigned long

Return values

Argument Description

F_NO_ERROR Successful execution.

Else See .Error Codes

THIN File System User Guide

Copyright HCC Embedded 2018 23 www.hcc-embedded.com

Example

void myinitfs(void)

{

 unsigned char ret;

 /* Initialize file system */

 fs_init();

 /* Create a volume on RAM */

 ret = f_initvolume(ram_initfunc, 0));

 if (ret != F_NO_ERROR)

 {

 printf("Volume initialization failed!");

 }

 else

 {

 /* Volume Ready for Use */

 .

 .

 .

 }

}

THIN File System User Guide

Copyright HCC Embedded 2018 24 www.hcc-embedded.com

f_delvolume

Use this function to free resources associated with the volume.

This function works independently of the status of the hardware; that is, it does not matter whether a card is

inserted or not.

Format

unsigned char f_delvolume (void)

Arguments

Argument

None.

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void mydelvol(void)

{

 unsigned char ret;

 /* Initialize drive */

 ret = f_delvolume();

 if (ret != F_NO_ERROR)

 printf("Unable to delete volume. Error: %d\n", ret);

 .

 .

}

THIN File System User Guide

Copyright HCC Embedded 2018 25 www.hcc-embedded.com

f_format

Use this function to format the specified drive.

If the media is not present, this function fails. If successful, all data on the specified volume are destroyed

and any open files are closed.

Any existing is unaffected by this command. The is re-created Master Boot Record Boot Sector Information

from the information provided by .f_getphy()

Note: The format fails if the specified format type is incompatible with the size of the physical media.

Format

unsigned char f_format (unsigned char fattype)

Arguments

Argument Description Type

fattype The type of format:

F_FAT12_MEDIA for FAT12

F_FAT16_MEDIA for FAT16

F_FAT32_MEDIA for FAT32

unsigned char

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

THIN File System User Guide

Copyright HCC Embedded 2018 26 www.hcc-embedded.com

Example

void myinitfs(void)

{

 unsigned char ret;

 f_initvolume();

 ret = f_format(F_FAT16_MEDIA);

 if (ret)

 printf("Unable to format drive! Error %d", ret);

 else

 printf("Drive formatted");

 .

 .

}

THIN File System User Guide

Copyright HCC Embedded 2018 27 www.hcc-embedded.com

f_hardformat

Use this function to format the drive, ignoring current format information. All open files will be closed.

This destroys any existing or . The new drive is formatted Master Boot Record Boot Sector Information

without a master boot record. The new drive starts with boot sector information created from the information

retrieved from the routine, and uses the whole available physical space for the volume. All data f_getphy()

on the drive are destroyed.

Note: The format fails if the specified format type is incompatible with the size of the physical media.

Format

unsigned char f_hardformat (unsigned char fattype)

Arguments

Argument Description Type

fattype The type of format:

F_FAT12_MEDIA for FAT12

F_FAT16_MEDIA for FAT16

F_FAT32_MEDIA for FAT32

unsigned char

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

THIN File System User Guide

Copyright HCC Embedded 2018 28 www.hcc-embedded.com

Example

void myinitfs(void)

{

 unsigned char ret;

 f_initvolume();

 ret = f_hardformat(F_FAT16_MEDIA);

 if (ret)

 printf("Format error: %d", ret);

 else

 printf("Drive formatted");

 .

 .

}

THIN File System User Guide

Copyright HCC Embedded 2018 29 www.hcc-embedded.com

f_getlabel

Use this function to write the volume label to a defined buffer.

Format

unsigned char f_getlabel (

 char * label,

 unsigned char len)

Arguments

Argument Description Type

label A pointer to the buffer to store the label in. This must be

capable of holding 12 characters.

char *

len The length of the buffer. unsigned char

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void getlabel(void)

{

 char label[12];

 unsigned char ret;

 ret = f_getlabel(label, 12);

 if (ret)

 printf("Error %d\n", ret);

 else

 printf("Drive is %s", label);

}

THIN File System User Guide

Copyright HCC Embedded 2018 30 www.hcc-embedded.com

f_setlabel

Use this function to set the volume label.

The label should be an ASCII string with a maximum length of 11 characters. Non-printable characters will

be padded out as space characters.

Format

unsigned char f_setlabel (const char * label)

Arguments

Argument Description Type

label A pointer to the null-terminated string to use. char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void setlabel(void)

{

 unsigned char ret;

 ret = f_setlabel(f_getcurrdrive(), "DRIVE 1");

 if (ret)

 printf("Error %d\n", ret);

}

THIN File System User Guide

Copyright HCC Embedded 2018 31 www.hcc-embedded.com

f_getfreespace

Use this function to fill a structure with information about the drive space usage: total space, free space,

used space, and bad (damaged) size.

Note:

If a drive is greater than 4GB, also read the high elements of the returned structure (for

example,) to get the upper 32 bits of each number.pspace.total_high

The first call to this function after a drive is mounted may take some time, depending on the size

and format of the medium being used. After the initial call, changes to the volume are counted;

the function then returns immediately with the data.

Format

unsigned char f_getfreespace (F_SPACE * pspace)

Arguments

Argument Description Type

pspace A pointer to the structure.F_SPACE F_SPACE *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

THIN File System User Guide

Copyright HCC Embedded 2018 32 www.hcc-embedded.com

Example

void info(void)

{

 F_SPACE space;

 unsigned char ret;

 /* Get free space on current drive */

 ret = f_getfreespace(space);

 if (!ret)

 {

 printf("There are:\

 %d bytes total,\

 %d bytes free,\

 %d bytes used,\

 %d bytes bad.",\

 space.total, space.free, space.used, space.bad);

 }

 else

 {

 printf("\nError %d reading drive\n", ret);

 }

}

THIN File System User Guide

Copyright HCC Embedded 2018 33 www.hcc-embedded.com

f_getserial

Use this function to get the volume’s serial number.

Format

unsigned char fn_getserial (unsigned long * serial)

Arguments

Argument Description Type

serial Where to store the serial number. unsigned long *

Return values

Return value Description

0 Successful execution.

Else See .Error Codes

THIN File System User Guide

Copyright HCC Embedded 2018 34 www.hcc-embedded.com

Directory Management

The functions are the following:

Function Description

f_mkdir() Creates a new directory.

f_chdir() Changes the current working directory.

f_rmdir() Removes a directory.

f_getcwd() Gets the current working directory.

THIN File System User Guide

Copyright HCC Embedded 2018 35 www.hcc-embedded.com

f_mkdir

Use this function to create a new directory.

Format

unsigned char f_mkdir (const char * dirname)

Arguments

Argument Description Type

dirname The name of the directory to create. char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 .

 .

 f_mkdir("subfolder"); /* Create directories */

 f_mkdir("subfolder/sub1");

 f_mkdir("subfolder/sub2");

 f_mkdir("/subfolder/sub3");

 .

 .

}

THIN File System User Guide

Copyright HCC Embedded 2018 36 www.hcc-embedded.com

f_chdir

Use this function to change the current working directory.

Format

unsigned char f_chdir (const char * dirname)

Arguments

Argument Description Type

dirname The name of the target directory. char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 .

 .

 f_mkdir("subfolder");

 f_chdir("subfolder"); /* Change directory */

 f_mkdir("sub2");

 f_chdir(".."); /* Go upward */

 f_chdir("subfolder/sub2"); /* Go into directory sub2 */

 .

 .

}

THIN File System User Guide

Copyright HCC Embedded 2018 37 www.hcc-embedded.com

f_rmdir

Use this function to remove a directory.

The function returns an error code if:

The directory is not empty.

The directory is read-only.

Format

unsigned char f_rmdir (const char * dirname)

Arguments

Argument Description Type

dirname The name of the directory to remove. char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 .

 f_mkdir("subfolder"); /* Create directories */

 f_mkdir("subfolder/sub1");

 .

 . /* Do some work */

 .

 f_rmdir("subfolder/sub1"); /* Remove directories */

 f_rmdir("subfolder");

 .

 .

}

THIN File System User Guide

Copyright HCC Embedded 2018 38 www.hcc-embedded.com

f_getcwd

Use this function to get the current working directory.

Format

unsigned char f_getcwd (

 char * buffer,

 unsigned char maxlen

 char root)

Arguments

Argument Description Type

buffer Where to store the current working directory string. char *

maxlen The length of the buffer. unsigned char

root The root. char

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

#define BUFFLEN 256

void myfunc(void)

{

 char buffer[BUFFLEN];

 unsigned char ret;

 ret = f_getcwd(buffer, BUFFLEN);

 if (!ret)

 printf("Current directory is %s", buffer);

 else

 printf("Error %d", ret)

}

THIN File System User Guide

Copyright HCC Embedded 2018 39 www.hcc-embedded.com

File Access

The functions are the following:

Function Description

f_open() Opens a file.

f_close() Closes a file.

f_flush() Flushes an open file to disk.

f_read() Reads bytes from a file at the current file position.

f_write() Writes data into a file at the current file position.

f_getc() Reads a character from the current position in an open file.

f_putc() Writes a character to an open file at the current file position.

f_eof() Checks whether the current position in an open file is the end of

file (EOF).

f_seteof() Moves the end of file (EOF) to the current file pointer.

f_tell() Gets the current read-write position in an open file.

f_seek() Moves the stream position in a file.

f_rewind() Sets the file position in an open file to the start of the file.

f_truncate() Opens a file for writing and truncates it to the specified length.

THIN File System User Guide

Copyright HCC Embedded 2018 40 www.hcc-embedded.com

f_open

Use this function to open a file. The following opening modes are allowed:

Mode Description

"r" Open existing file for reading. The stream is positioned at the beginning of the file.

"r+" Open existing file for reading and writing. The stream is positioned at the beginning of the file.

"w" Truncate file to zero length or create file for writing. The stream is positioned at the beginning of

the file.

"w+" Open a file for reading and writing. The file is created if it does not exist; otherwise it is truncated.

The stream is positioned at the beginning of the file.

"a" Open for appending (writing to end of file). The file is created if it does not exist. The stream is

positioned at the end of the file.

"a+" Open for reading and appending (writing to end of file). The file is created if it does not exist. The

stream is positioned at the end of the file.

Note the following:

The same file can be opened multiple times in “r” mode.

A file can only be opened once at a time in a mode which gives write access (that is, in “r+, “w”, “w+”

, “a” or “a+” mode).

The same file can be opened multiple times in “r” mode and at the same time once in one of the “r+,

“a” or “a+” modes which give write access.

If a file is opened in “w” or “w+” mode, a lock mechanism prevents it being opened in any other

mode. This prevents opening of the file for reading and writing at the same time.

Note: There is no text mode. The system assumes that all files are in binary mode only.

Format

F_FILE * f_open (

 const char * filename,

 const char * mode)

THIN File System User Guide

Copyright HCC Embedded 2018 41 www.hcc-embedded.com

Arguments

Argument Description Type

filename The file to open. char *

mode The opening mode (see above). char *

Return values

Return value Description

F_FILE * A pointer to the associated opened file handle.

0 The file could not be opened.

Example

void myfunc(void)

{

 F_FILE *file;

 char c;

 file = f_open("myfile.bin", "r");

 if (!file)

 {

 printf("File cannot be opened!");

 return;

 }

 f_read(&c, 1, 1, file); /* Read one byte */

 printf("'%c' is read from file", c);

 f_close(file);

}

THIN File System User Guide

Copyright HCC Embedded 2018 42 www.hcc-embedded.com

f_close

Use this function to close a previously opened file.

Format

unsigned char f_close (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The handle of the file. F_FILE *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 F_FILE *file;

 char *string = "ABC";

 file = f_open("myfile.bin", "w");

 if (!file)

 {

 printf("File cannot be opened!");

 return;

 }

 f_write(string, 3, 1, file); /* Write 3 bytes */

 if (!f_close(file))

 {

 printf("File stored");

 }

 else

 {

 printf ("File close error!");

 }

}

THIN File System User Guide

Copyright HCC Embedded 2018 43 www.hcc-embedded.com

f_flush

Use this function to flush an open file to disk.

This is logically equivalent to closing and then opening a file to ensure that the data changed before the

flush is committed to the disk.

Format

unsigned char f_flush (F_FILE * f)

Arguments

Argument Description Type

f The handle of the file. F_FILE *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 F_FILE *file;

 char *string = "ABC";

 file = f_open("myfile.bin", "w");

 if (!file)

 {

 printf("File cannot be opened!");

 return;

 }

 f_write(string, 3, 1, file); /* Write 3 bytes */

 f_flush(file); /* Commit data written */

 .

 .

 .

}

THIN File System User Guide

Copyright HCC Embedded 2018 44 www.hcc-embedded.com

f_read

Use this function to read bytes from the current file position. The current file pointer is increased by the

number of bytes read. The file must be opened in “r”, "r+", "w+" or "a+" mode.

Format

long f_read (

 void * buf,

 long size,

 long size_t,

 F_FILE * filehandle)

Arguments

Argument Description Type

buf The buffer to store data in. void *

size The size of the items to be read. long

size_t The number of items to be read. long

filehandle The handle of the file. F_FILE *

Return values

Return value Description

number The number of items read successfully.

Example

int myreadfunc(char *filename, char *buffer, long buffsize)

{

 F_FILE *file = f_open(filename, "r");

 long size = f_filelength(filename);

 if (!file)

 {

 printf("%s cannot be opened!", filename);

 return 1;

 }

 if (f_read(buffer, 1, size, file)!= size)

 {

 printf("Different number of items read");

 }

 f_close(file);

 return 0;

}

THIN File System User Guide

Copyright HCC Embedded 2018 45 www.hcc-embedded.com

f_write

Use this function to write data into a file at the current file position. The current file position is increased by

the number of bytes successfully written. The file must be opened with “w”, “w+”, "a+", "r+" or “a”.

Format

long f_write (

 void * buf,

 long size,

 long size_t,

 F_FILE * filehandle)

Arguments

Argument Description Type

buf The buffer which contains the data. void *

size The size of the items to be written. long

size_t The number of items to be written. long

filehandle The handle of the file. F_FILE *

Return values

Return value Description

number The number of items successfully written.

Example

void myfunc(void)

{

 F_FILE *file;

 char *string = "ABC";

 file = f_open("myfile.bin", "w");

 if (!file)

 {

 printf("File cannot be opened!");

 return;

 }

 /* Write 3 items */

 if (f_write(string, 1, 3, file)!= 3)

 {

 printf("Different number of items written!");

 }

 f_close(file);

}

THIN File System User Guide

Copyright HCC Embedded 2018 46 www.hcc-embedded.com

f_getc

Use this function to read a character from the current position in the specified open file.

Format

int f_getc (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The handle of the open file. F_FILE *

Return values

Return value Description

-1 Read failed. See .Error Codes

value The character read from the file.

Example

int myreadfunc(char *filename, char *buffer, long buffsize)

{

 F_FILE *file = f_open(filename, "r");

 while (buffsize--)

 {

 int ch;

 if ((ch = f_getc(file)) == -1)

 break;

 *buffer++ = ch;

 buffsize--;

 }

 f_close(file);

 return 0;

}

THIN File System User Guide

Copyright HCC Embedded 2018 47 www.hcc-embedded.com

f_putc

Use this function to write a character to the specified open file at the current file position. The current file

position is incremented.

Format

int f_putc (

 char ch,

 F_FILE * filehandle)

Arguments

Argument Description Type

ch The character to be written. char

filehandle The handle of the open file. F_FILE *

Return values

Return value Description

-1 Write failed.

value The successfully written character.

Example

void myfunc(char *filename, long num)

{

 F_FILE *file = f_open(filename, "w");

 while (num--)

 {

 int ch = 'A';

 if (ch != (f_putc(ch))

 {

 printf("f_putc error!");

 break;

 }

 }

 f_close(file);

 return 0;

}

THIN File System User Guide

Copyright HCC Embedded 2018 48 www.hcc-embedded.com

f_eof

Use this function to check whether the current position in the specified open file is the end of file (EOF).

Format

unsigned char f_eof (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The handle of the open file. F_FILE *

Return values

Return value Description

0 Not at end of file.

Else End of file or an error. See .Error Codes

Example

int myreadfunc(char *filename, char *buffer, long buffsize)

{

 F_FILE *file = f_open(filename, "r");

 while (!f_eof())

 {

 if (!buffsize) break;

 buffsize--;

 f_read(buffer++, 1, 1, file);

 }

 f_close(file);

 return 0;

}

THIN File System User Guide

Copyright HCC Embedded 2018 49 www.hcc-embedded.com

f_seteof

Use this function to move the end of file (EOF) to the current file pointer.

All data after the new EOF position are lost.

Format

unsigned char f_seteof (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The handle of the file. F_FILE *

Return values

Return value Description

0 Successful execution.

Else See .Error Codes

Example

int mytruncatefunc(char *filename, int position)

{

 F_FILE *file = f_open(filename, "r+");

 f_seek(file, position, SEEK_SET);

 if (f_seteof(file))

 printf("Truncate failed!\n");

 f_close(file);

 return 0;

}

THIN File System User Guide

Copyright HCC Embedded 2018 50 www.hcc-embedded.com

f_tell

Use this function to get the current read-write position in the specified open file.

Format

long f_tell (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The handle of the file. F_FILE *

Return values

Return value Description

filepos The current read or write file position.

Example

int myreadfunc(char *filename, char *buffer, long buffsize)

{

 F_FILE *file = f_open(filename, "r");

 printf("Current position %d", f_tell(file)); /* Position 0 */

 f_read(buffer, 1, 1, file); /* Read one byte */

 printf("Current position %d", f_tell(file)); /* Position 1 */

 f_read(buffer, 1, 1, file); /* Read one byte */

 printf("Current position %d", f_tell(file)); /* Position 2 */

 f_close(file);

 return 0;

}

THIN File System User Guide

Copyright HCC Embedded 2018 51 www.hcc-embedded.com

f_seek

Use this function to move the stream position in the specified file. The file must be open.

Format

unsigned char f_seek (

 F_FILE * filehandle,

 long offset,

 unsigned char whence)

Arguments

Argument Description Type

filehandle The handle of the file. F_FILE *

offset The relative byte position according to .whence long

whence Where to calculate from:offset

F_SEEK_CUR – current position of file pointer.

F_SEEK_END – end of file.

F_SEEK_SET – beginning of file.

unsigned char

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

int myreadfunc(char *filename, char *buffer, long buffsize)

{

 F_FILE *file = f_open(filename, "r");

 f_read(buffer, 1, 1, file); /* Read one byte */

 f_seek(file, 0, SEEK_SET);

 f_read(buffer, 1, 1, file); /* Read the same byte */

 f_seek(file, -1, SEEK_END);

 f_read(buffer, 1, 1, file); /* Read the last byte */

 f_close(file);

 return 0;

}

THIN File System User Guide

Copyright HCC Embedded 2018 52 www.hcc-embedded.com

f_rewind

Use this function to set the file position in the specified open file to the start of the file.

Format

unsigned char f_rewind (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The handle of the file. F_FILE *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 char buffer[4];

 char buffer2[4];

 F_FILE *file = f_open("myfile.bin", "r");

 if (file)

 {

 f_read(buffer, 4, 1, file);

 f_rewind(file); /* Rewind file pointer */

 f_read(buffer2, 4, 1, file); /* Read from the beginning */

 f_close(file);

 }

 return 0;

}

THIN File System User Guide

Copyright HCC Embedded 2018 53 www.hcc-embedded.com

f_truncate

Use this function to open a file for writing and truncate it to the specified length.

If the length is greater than the length of the existing file, the file is padded with zeroes to the truncated

length.

Format

F_FILE *f_truncate (

 const char * filename,

 unsigned long length)

Arguments

Argument Description Type

filename The file to open. char *

length The new length of the file. unsigned long

Return values

Return value Description

F_FILE * A pointer to the associated opened file handle, or 0 if it could not

be opened.

Example

int mytruncatefunc(char *filename, unsigned long length)

{

 F_FILE *file = f_truncate(filename, length);

 if (!file)

 {

 printf("File opening error!");

 }

 else

 {

 printf("File %s truncated to %d bytes", filename, length);

 f_close(file);

 }

 return 0;

}

THIN File System User Guide

Copyright HCC Embedded 2018 54 www.hcc-embedded.com

File Management

The functions are the following:

Function Description

f_delete() Deletes a file.

f_findfirst() Finds the first file or subdirectory in a specified directory.

f_findnext() Finds the next file or subdirectory in a specified directory after a

previous call to or .f_findfirst() f_findnext()

f_rename() Renames a file or directory.

f_getattr() Gets the attributes of a file.

f_setattr() Sets the attributes of a file.

f_gettimedate() Gets time and date information from a file or directory.

f_settimedate() Sets time and date information for a file or directory.

THIN File System User Guide

Copyright HCC Embedded 2018 55 www.hcc-embedded.com

f_delete

Use this function to delete a file.

Note: A read-only or open file cannot be deleted.

Format

unsigned char f_delete (const char * filename)

Arguments

Argument Description Type

filename A null-terminated string with the name of the file, with or

without its path.

char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 .

 .

 f_delete("oldfile.txt");

 f_delete("A:/subdir/oldfile.txt");

 .

 .

}

THIN File System User Guide

Copyright HCC Embedded 2018 56 www.hcc-embedded.com

f_findfirst

Use this function to find the first file or subdirectory in a specified directory.

First call and then, if the file is found, get the next file with . Files with the system f_findfirst() f_findnext()

attribute set are ignored.

Note: If this function is called with "*.*" and it is not the root directory, then:

the first entry found is ".", the current directory.

the second entry found is “..”, the parent directory.

Format

unsigned char f_findfirst (

 const char * filename,

 F_FIND * find)

Arguments

Argument Description Type

filename The name of the file or subdirectory to find. char *

find Where to store the file information. F_FIND *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

THIN File System User Guide

Copyright HCC Embedded 2018 57 www.hcc-embedded.com

Example

void mydir(void)

{

 F_FIND find;

 if (!f_findfirst("A:/subdir/*.*", &find))

 {

 do

 {

 printf("filename:%s", find.filename);

 if (find.attr&F_ATTR_DIR)

 {

 printf(" directory\n");

 }

 else

 {

 printf(" size %d\n", find.filesize);

 }

 } while (!f_findnext(&find));

 }

}

THIN File System User Guide

Copyright HCC Embedded 2018 58 www.hcc-embedded.com

f_findnext

Use this function to find the next file or subdirectory in a specified directory after a previous call to

 or .f_findfirst() f_findnext()

First call then, if a file is found, get the rest of the matching files by repeated calls to f_findfirst()

. Files with the system attribute set are ignored.f_findnext()

Note: If this function is called with "*.*" and it is not the root directory, the first file found will be "..", the

parent directory.

Format

unsigned char f_findnext (F_FIND * find)

Arguments

Argument Description Type

find Find information (created by calling).f_findfirst() F_FIND *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

THIN File System User Guide

Copyright HCC Embedded 2018 59 www.hcc-embedded.com

Example

void mydir(void)

{

 F_FIND find;

 if (!f_findfirst("/subdir/*.*", &find))

 {

 do

 {

 printf ("filename:%s", find.filename);

 if (find.attr&F_ATTR_DIR)

 {

 printf(" directory\n");

 }

 else

 {

 printf(" size %d\n", find.filesize);

 }

 }

 while (!f_findnext(&find));

 }

}

THIN File System User Guide

Copyright HCC Embedded 2018 60 www.hcc-embedded.com

f_rename

Use this function to rename a file or directory.

Note: The file or directory must not be read-only. If it is a file, it must not be open.

Format

unsigned char f_rename (

 const char * filename,

 const char * newname)

Arguments

Argument Description Type

filename The current file or directory name, with or without its path. char *

newname The new name of the file or directory (without the path). char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 .

 .

 f_rename("oldfile.txt", "newfile.txt");

 f_rename("A:/subdir/oldfile.txt", "newfile.txt");

 .

 .

}

THIN File System User Guide

Copyright HCC Embedded 2018 61 www.hcc-embedded.com

f_getattr

Use this function to get the (F_ATTR_XXX) of a specified file.file attributes

Format

unsigned char f_getattr (

 const char * filename,

 unsigned char * attr)

Arguments

Argument Description Type

filename The name of the file. char *

attr Where to write the attributes. unsigned char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 unsigned char attr;

 /* Find whether myfile.txt is read-only */

 if (!f_getattr("myfile.txt", &attr)

 {

 if (attr & F_ATTR_READONLY)

 printf("myfile.txt is read only");

 else

 printf("myfile.txt is writable");

 }

 else

 {

 printf("File not found!");

 }

}

THIN File System User Guide

Copyright HCC Embedded 2018 62 www.hcc-embedded.com

f_setattr

Use this function to set the (F_ATTR_XXX) of a file.file attributes

Note: The directory and volume attributes cannot be set by this function.

Format

unsigned char f_setattr (

 const char * filename,

 unsigned char attr)

Arguments

Argument Description Type

filename The name of the file. char *

attr The new attribute settings. unsigned char

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 /* Make myfile.txt read-only and hidden */

 f_setattr("myfile.txt", F_ATTR_READONLY | F_ATTR_HIDDEN);

}

THIN File System User Guide

Copyright HCC Embedded 2018 63 www.hcc-embedded.com

f_gettimedate

Use this function to get time and date information from a file or directory.

Date and Time Formats

The date and time fields are two 16 bit fields associated with each file/directory.

The required format for the date for PC compatibility is a short integer ‘d’ (16 bit), such that:

Argument Valid values Format

Day 0-31 (d & 0x001F)

Month 1-12 ((d & 0x01E0) >> 5)

Years since 1980 0-119 ((d & 0xFE00) >> 9)

The required format for the time for PC compatibility is a short integer ‘t’ (16 bit), such that:

Argument Valid values Format

Two second increments 0-30 (t & 0x001F)

Minute 0-59 ((t & 0x07E0) >> 5)

Hour 0-23 ((t & 0xF800) >> 11)

Format

unsigned char f_gettimedate (

 const char * filename,

 unsigned short * pctime,

 unsigned short * pcdate)

Arguments

Argument Description Type

filename The name of the file or directory. char *

pctime Where to store the creation time. unsigned short *

pcdate Where to store the creation date. unsigned short *

THIN File System User Guide

Copyright HCC Embedded 2018 64 www.hcc-embedded.com

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 unsigned short t, d;

 if (!f_gettimedate("subfolder", &t, &d))

 {

 unsigned short sec = (t & 0x001F) << 1;

 unsigned short minute = ((t & 0x07E0) >> 5);

 unsigned short hour = ((t & 0xF800) >> 11);

 unsigned short day = (d & 0x001F);

 unsigned short month = ((d & 0x01E0) >> 5);

 unsigned short year = 1980 + ((d & 0xFE00) >> 9)

 printf("Time: %d:%d:%d", hour, minute, sec);

 printf("Date: %d.%d.%d", year, month, day);

 }

 else

 {

 printf("File time cannot be retrieved!");

 }

}

THIN File System User Guide

Copyright HCC Embedded 2018 65 www.hcc-embedded.com

f_settimedate

Use this function to set the time and date of a file or directory.

Date and Time Formats

The date and time fields are two 16 bit fields associated with each file/directory.

The required format for the date for PC compatibility is a short integer ‘d’ (16 bit), such that:

Argument Valid values Format

Day 0-31 (d & 0x001F)

Month 1-12 ((d & 0x01E0) >> 5)

Years since 1980 0-119 ((d & 0xFE00) >> 9)

The required format for the time for PC compatibility is a short integer ‘t’ (16 bit), such that:

Argument Valid values Format

Two second increments 0-30 (t & 0x001F)

Minute 0-59 ((t & 0x07E0) >> 5)

Hour 0-23 ((t & 0xF800) >> 11)

Format

unsigned char f_settimedate (

 const char * filename,

 unsigned short ctime,

 unsigned short cdate)

Arguments

Argument Description Type

filename The name of the file or directory. char *

ctime The creation time of the file or directory. unsigned short

cdate The creation date of the file or directory. unsigned short

THIN File System User Guide

Copyright HCC Embedded 2018 66 www.hcc-embedded.com

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 f_mkdir("subfolder"); /* Create directory */

 f_settimedate("subfolder", f_gettime(), f_getdate());

}

THIN File System User Guide

Copyright HCC Embedded 2018 67 www.hcc-embedded.com

5.3 Types and Definitions

This section describes the main elements that are defined in the API Header file.

F_FILE: File Handle

The file handle, used as a reference for accessing files.

The handle is obtained when a file is opened and released when it is closed.

F_FIND

The structure takes this form:F_FIND

Element Type Description

filename[F_MAXPATH] Char. File name + extension.

name[F_MAXNAME] Char. File name.

ext[F_MAXEXT] Char. File extension.

attr Unsigned char. File attribute.

ctime Unsigned short. Creation time.

cdate Unsigned short. Creation date.

cluster Unsigned long. For internal use only.

filesize Long. Length of file.

findfsname F_NAME. For internal use only.

pos F_POS. For internal use only.

Note: The F_NAME and F_POS structures are for file system internal use only.

THIN File System User Guide

Copyright HCC Embedded 2018 68 www.hcc-embedded.com

File Attribute Settings

The following possible file attribute settings are defined by the FAT file system:

Attribute Bit Definition Description

F_ATTR_ARC Archive.

F_ATTR_DIR Directory.

F_ATTR_VOLUME Volume.

F_ATTR_SYSTEM System.

F_ATTR_HIDDEN Hidden.

F_ATTR_READONLY Read-only.

F_SPACE

The structure takes this form:F_SPACE

Element Type Description

total unsigned long The total size in bytes of the disk.

free unsigned long The number of free bytes on the disk.

used unsigned long The number of used bytes on the disk.

bad unsigned long The number of bad bytes on the disk.

total_high unsigned long The high part of total.

free_high unsigned long The high part of free.

used_high unsigned long The high part of used.

bad_high unsigned long The high part of bad.

THIN File System User Guide

Copyright HCC Embedded 2018 69 www.hcc-embedded.com

5.4 Error Codes

The table below lists all the error codes that may be generated by the API calls. Please note that some error

codes are not used by every file system.

Error Code Value Meaning

F_NO_ERROR 0 No Error - function was successful.

F_ERR_RESERVED_1 1 The specified drive does not exist.

F_ERR_NOTFORMATTED 2 The specified volume has not been formatted.

F_ERR_INVALIDDIR 3 The specified directory is invalid.

F_ERR_INVALIDNAME 4 The specified file name is invalid.

F_ERR_NOTFOUND 5 The file or directory could not be found.

F_ERR_DUPLICATED 6 The file or directory already exists.

F_ERR_NOMOREENTRY 7 The volume is full.

F_ERR_NOTOPEN 8 A function that requires the file to be open to

access a file has been called.

F_ERR_EOF 9 End of file.

F_ERR_RESERVED_2 10 Not used.

F_ERR_NOTUSEABLE 11 Invalid parameters for >.f_seek()

F_ERR_LOCKED 12 The file has already been opened for writing

/appending.

F_ERR_ACCESSDENIED 13 The necessary physical read and/or write functions

are not present for this volume.

F_ERR_NOTEMPTY 14 The directory to be renamed or deleted is not

empty.

F_ERR_INITFUNC 15 No init function is available for a driver, or the

function generates an error.

F_ERR_CARDREMOVED 16 The card has been removed.

F_ERR_ONDRIVE 17 Non-recoverable error on drive.

F_ERR_INVALIDSECTOR 18 A sector has developed an error.

F_ERR_READ 19 Error reading the volume.

F_ERR_WRITE 20 Error writing file to volume.

THIN File System User Guide

Copyright HCC Embedded 2018 70 www.hcc-embedded.com

Error Code Value Meaning

F_ERR_INVALIDMEDIA 21 The media is not recognized.

F_ERR_BUSY 22 The caller could not obtain the semaphore within

the expiry time.

F_ERR_WRITEPROTECT 23 The physical media is write protected.

F_ERR_INVFATTYPE 24 The type of FAT is not recognized.

F_ERR_MEDIATOOSMALL 25 Media is too small for the format type requested.

F_ERR_MEDIATOOLARGE 26 Media is too large for the format type requested.

F_ERR_NOTSUPPSECTORSIZE 27 The sector size is not supported. The only

supported sector size is 512 bytes.

F_ERR_ALLOCATION 28 Memory allocation error.

F_ERR_OS 29 Only possible if is enabled.RTOS_SUPPORT

THIN File System User Guide

Copyright HCC Embedded 2018 71 www.hcc-embedded.com

6 Integration
THIN is designed to be as open and as portable as possible. No assumptions are made about the

functionality, the behavior, or even the existence, of the underlying operating system. For the system to

work at its best, perform the porting outlined below. This is a straightforward task for an experienced

engineer.

Note: THIN only uses the OS Abstraction Layer (OAL) when RTOS support is enabled.

6.1 Requirements

Stack Requirements

THIN functions are always called in the context of the calling thread or task. Naturally, the functions require

stack space, which must be allocated in order to use file system functions. Typically calls to the file system

will use <0.5KB of stack. However, if long filenames are used, increase the stack size to 1KB; see

.F_LONGFILENAME

Real Time Requirements

The bulk of the file system is code that executes without delay. There are exceptions at the driver level,

where delays in writing to the physical media and in the communication cause the system to wait on

external events. The points at which this occurs are documented in the applicable driver sections. Modify

the delays to meet the system requirements, either by implementing interrupt control of events, or by

scheduling other parts of the system. Read the relevant driver section for details.

6.2 OS Abstraction Layer

When is enabled, the module uses the OS Abstraction Layer (OAL) that allows it to run RTOS Support

seamlessly with a wide variety of RTOSes, or without an RTOS.

The system uses the following OAL components:

OAL Resource Number Required

Tasks 0

Mutexes 1

Events 0

THIN File System User Guide

Copyright HCC Embedded 2018 72 www.hcc-embedded.com

6.3 PSP Porting

The Platform Support Package (PSP) is designed to hold all platform-specific functionality, either because it

relies on specific features of a target system, or because this provides the most efficient or flexible solution

for the developer. For full details of its functions and macros, see the HCC Base Platform Support Package

.User Guide

The THIN system makes use of the following standard PSP functions:

Function Package Element Description

psp_free() psp_base psp_alloc De-allocates a block of memory allocated by

, making it available for further psp_malloc()

allocation.

psp_getcurrenttimedate() psp_base psp_rtc Returns the current time and date. This is used for

date and time-stamping files.

psp_getrand() psp_base psp_rand Generates a random number. This is used for the

volume serial number.

psp_malloc() psp_base psp_alloc Allocates a block of memory, returning a pointer to

the beginning of the block.

This is only used if the FATBITFIELD_ENABLE

option is enabled.

psp_memcpy() psp_base psp_string Copies a block of memory. The result is a binary

copy of the data.

psp_memset() psp_base psp_string Sets the specified area of memory to the defined

value.

The system does not make use of any standard PSP macros.

THIN File System User Guide

Copyright HCC Embedded 2018 73 www.hcc-embedded.com

7 Test Routines
A set of test routines is provided for exercising the file system and ensuring that it behaves correctly. The

test code is in the file .src/fat_thin/test/test.c

Note: On some systems the test code may be difficult or impossible to run because of the lack of

resources. Also note that the test code depends on the features of the file system which you enable.

7.1 Running Tests

To run the tests, simply call with the number of the test you want to run as the parameter, or with f_dotest()

0 if you want to run all the available tests.

Note the following:

Seek tests use more RAM. Use the option F_MAX_SEEK_TEST in the configuration file

 to limit the maximum size of the seek test to be performed. The options are: 128, config_thin_test.h

256, 512, 1024, 2048, 4096, 8192, 16384 (the default) and 32768.

You must define the F_FAT_TYPE in to specify whether the tests will be executed config_thin_test.h

on a FAT12, FAT16 or FAT32 card.

THIN File System User Guide

Copyright HCC Embedded 2018 74 www.hcc-embedded.com

7.2 Test Summary

The tests are the following:

Note: Only seek tests allowed by F_MAX_SEEK_TEST are executed.

Test Function

0 Run all the tests

1 Formatting test.

2 Directory test.

3 Find test.

5 seek 128

6 seek 256

7 seek 512

8 seek 1024

9 seek 2048

10 seek 4096

11 seek 8192

12 seek 16384

13 seek 32768

14 Open test.

15 Append test.

16 Write test.

17 Dots test.

18 rit test.

	System Overview
	Introduction
	Feature Check
	Packages and Documents
	Packages
	Documents

	Change History

	Source File List
	API Header Files
	Configuration Files
	Version File
	Test File
	THIN File System

	Configuration Options
	General Options
	Options for Testing
	Hints and Tips for Optimization
	Merging files
	Power Consumption
	Safety

	Drive Format
	Completely Unformatted Media
	Master Boot Record (MBR)
	Boot Sector Information

	Application Programming Interface
	Module Management
	fs_init
	fs_delete

	File System API
	Volume Management
	f_initvolume
	f_delvolume
	f_format
	f_hardformat
	f_getlabel
	f_setlabel
	f_getfreespace
	f_getserial

	Directory Management
	f_mkdir
	f_chdir
	f_rmdir
	f_getcwd

	File Access
	f_open
	f_close
	f_flush
	f_read
	f_write
	f_getc
	f_putc
	f_eof
	f_seteof
	f_tell
	f_seek
	f_rewind
	f_truncate

	File Management
	f_delete
	f_findfirst
	f_findnext
	f_rename
	f_getattr
	f_setattr
	f_gettimedate
	f_settimedate

	Types and Definitions
	F_FILE: File Handle
	F_FIND
	File Attribute Settings
	F_SPACE

	Error Codes

	Integration
	Requirements
	Stack Requirements
	Real Time Requirements

	OS Abstraction Layer
	PSP Porting

	Test Routines
	Running Tests
	Test Summary

