D Hcc HCC OS Abstraction Layer (Base) User Guide

HCC OS Abstraction
Layer (Base) User Guide

Version 1.30

For use with OS Abstraction Layer Versions 2.02 and
above

Date: 24-Feb-2016 16:44

All rights reserved. This document and the associated software are the sole property of HCC
Embedded. Reproduction or duplication by any means of any portion of this document without the
prior written consent of HCC Embedded is expressly forbidden.

HCC Embedded reserves the right to make changes to this document and to the related software at
any time and without notice. The information in this document has been carefully checked for its
accuracy; however, HCC Embedded makes no warranty relating to the correctness of this document.

Copyright HCC Embedded 2015 1 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

Table of Contents

System Overview 4
Introduction 4
Feature Check 5
Packages and Documents 5

Packages 5
Documents 5
Change History 6

Using the Base Package with your RTOS 7

Abstraction Example 8

Source File List 9
Configuration File 9
Source Files 9
Version File 9
API Interface Files 9

Configuration Options 10
config_oal.h 10
RTOS Integration 11

oal/os/oalp_defs.h 11
config_oal_os.h 11

System Design 13

Events 13
Event Groups and Flags 13
Interrupt Service Routines - ISRs 14
ISR Functions 14
Optional Files 14
Mutexes 15
Tasks 15
Creating Tasks 15

Application Programming Interface 16

Event Functions 16
oal_event_create 16
oal_event_delete 17
oal_event_get 18
oal_event_set 19
oal_event_set_int 20

ISR Functions 21
oal_int_enable 21
oal_int_disable 22
oal_isr_install 23
oal_isr_enable 24
oal_isr_delete 25
oal_isr_disable 26

Copyright HCC Embedded 2015

www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

Mutex Functions

27

oal_mutex_create

27

oal_mutex_delete

28

oal_mutex_get

29

oal_mutex_put

30

Task Functions

31

oal_task_m_dsc_init

31

oal_task_m_create

32

oal_task_m_delete

33

oal_task_m_get index

34

oal_task_create

35

oal_task_delete

36

oal_task get id

37

38

oal_task_poll
oal_task_sleep

39

oal_task_yield

40

Error Codes

41

Types and Definitions

42

Event Definitions

42

oal_event t

42

oal_event_flags_t

42

oal_event_timeout t
ISR Definitions

42

43

oal_isr_id_t

43

oal_isr_dsc_t

43

The ISR Function and Code

oal_mutex _t

43

43

Task Definitions

44

oal_task_id_t

44

oal_task dsc t

44

oal_task_m _dsc t

45

OAL_TASK_FN

45

OAL_TASK_PRE

45

Copyright HCC Embedded 2015

www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

1 System Overview

1.1 Introduction

This guide is for those who wish to use HCC Embedded's OS Abstraction Layer (OAL) for their
developments in embedded systems. Using the OAL facilitates development of embedded system software
that is independent of a specific Real Time Operating System (RTOS) from an embedded software supplier.

Note: This manual is only needed by those creating an OAL for their RTOS. For systems where HCC
has already provided an OAL, this manual is only provided for reference and completeness.

All HCC systems and modules that require RTOS functionality use the OAL to provide it. The OAL allows
these to run seamlessly with a wide variety of RTOSes, or without an RTOS.

The HCC OAL is an abstraction of a RTOS. It defines how HCC software requires an RTOS to behave and
its Application Programming Interface (API) defines the functions it requires. It can be used in two situations:

® The RTOS you use provides the required functions, so "hooks" must be created to call its functions
from the HCC abstractions. This porting to the RTOS is either undertaken by HCC and provided in a
specific package, or implemented by yourself using an HCC template.

® Thereis no RTOS. A "No OS" package is available for this situation.

The OAL API defines functions for handling the following elements:

® Events — these are used as a signaling mechanism, both between tasks and from asynchronous
sources such as Interrupt Service Routines to tasks.

® Interrupt Service Routines (ISRs) — depending on the RTOS, ISR functions may be platform-specific
or RTOS-specific.

®* Mutexes — these guarantee that, while one task is using a particular resource, no other task can pre-
empt it and use the same resource.

® Tasks.

Copyright HCC Embedded 2015 4 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

1.2 Feature Check

The main features of the module are the following:

® |Itis fully MISRA-compliant.

® It conforms to the HCC Advanced Embedded Framework.
® |t provides a standard interface for HCC tasks.

® |t provides a standard interface for HCC mutexes.

® |t provides a standard interface for HCC events.

1.3 Packages and Documents

Packages

The table below lists the packages that you need in order to use the OAL:

Package Description
oal_base The OAL base package described in this document.
This may be the only package you have, or you may have one of the following as
well.
oal_os_<your A package specific to your RTOS.
RTOS> You will only have this if HCC has provided a package for your RTOS.
oal_os_template A package template providing a set of empty functions for you to insert
code into. You will only have this if you are implementing your own RTOS within this
system.

For details of how packages combine, see Using the Base Package with your RTOS.

Documents

For an overview of HCC RTOS software, refer to the Product Information section of the main HCC website.
Readers should note the points in the HCC Documentation Guidelines on the HCC documentation website.
HCC Firmware Quick Start Guide

This document describes how to install packages provided by HCC in the target development environment.
Also follow the Quick Start Guide when HCC provides package updates.

HCC Source Tree Guide

This document describes the HCC source tree. It gives an overview of the system to make clear the logic
behind its organization.

Copyright HCC Embedded 2015 5 www.hcc-embedded.com

http://www.hcc-embedded.com/embedded-systems-software-products/operating-system-rtos
https://doc.hcc-embedded.com/display/HCCDocRoot/HCC+Documentation+Guidelines

HCC OS Abstraction Layer (Base) User Guide

HCC OS Abstraction Layer (Base) User Guide
This is this document.
HCC OAL for <RTOS> User Guide

There is a separate document for each RTOS which HCC has ported the OAL to. These complement this
base user guide.

1.4 Change History

This section includes recent changes to this product. For a list of all the changes, refer to the file src/history
/oal/oal_base.txt in the distribution package.

Version Changes

2.02 Introduced oal_task_m_dsc_init(), oal_task_m_create(), oal_task_m_delete(), and
oal_task_m_get_index() functions for handling multiple instances of tasks.

2.01 Added the config_oal.h file which allows disabling/enabling of parts of the OAL.
2.00 Added oal task ttype to oalp_task.h.
Added pointer to oal_task tas the first parameter to oal_task_create().
The function oal_task_delete() now expects a pointer to oal_task tinstead of oal_task id t.

Added the oal_task_yield() function.

Copyright HCC Embedded 2015 6 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

2 Using the Base Package with your RTOS

There are three options as described below.
1. HCC has undertaken the porting to your RTOS

In this case you will have the following packages:

® The oal_base package described in this manual. This defines the standard functions that must be
provided by the RTOS (the standard RTOS abstraction to be used by all HCC middleware).

® A package specific to your RTOS. This calls the real RTOS functions needed. Unzip the files from
this package into the oal/os folder in the source tree. These files will automatically call the correct
functions.

2.You are porting to your RTOS yourself

In this case, you will have the following packages:

® The oal_base package described in this manual. This defines the standard functions that must be
provided by the OAL (the standard RTOS abstraction to be used by all HCC middleware).

®* The oal_os_template package. The template provides a set of empty functions. You have to insert
code into the various functions, as described in the HCC OAL Template User's Guide, and place the
resulting files in a folder, ideally the 3rd Party folder. The abstraction will call the correct function in
your finished package.

3. There is no RTOS

In this case you will have just the oal_os_nos package, which is described in its own manual.

Copyright HCC Embedded 2015 7 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

3 Abstraction Example

This section uses one function, oal_event_create(), as an example of how abstraction works. All HCC
modules that require event type functionality will call this OAL function to create the event.

The definition in the OAL, described in Application Programming Interface is:

int oal _event_create (oal _event_t * p_event)

The implementation of this function is RTOS-specific and the individual implementations are contained in
the RTOS-specific packages.

In the HCC port to FreeRTOS™, this becomes:

oal _ret_t oal __event_create (oal _event_t * p_event)
{
int rc = QOAL_SUCCESS;
*p_event = xQueueCreate(1, sizeof(oal_event_flags_t));

if (*p_event == 0)
{
rc = OAL_ERR_RESOURCE;
}
return rc;

In the HCC port to CMX™, this becomes:

oal _ret_t oal __event_create (oal _event_t * p_event)

{
*p_event = 0;
return QAL_SUCCESS;

}

Every other RTOS which the function is ported to may have different code, taking account of the way that
the particular RTOS operates. As long as the RTOS package files are placed in the correct locations, the
correct code will be called when it is required.

Copyright HCC Embedded 2015 8 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

4 Source File List

This section lists and describes all the source code files included in the system. These files follow HCC
Embedded's standard source tree system, described in the HCC Source Tree Guide. All references to file
pathnames refer to locations within this standard source tree, not within the package you initially receive.

Note: Do not modify any files except the configuration file.

4.1 Configuration File

The file src/config/config_oal.h contains all the configurable parameters of the OAL. For details of these
options, see Configuration Options, which also covers the RTOS-specific configuration files.

4.2 Source Files
These files are in the directory src/oal. These files should only be modified by HCC.

File Description

oal_common.h Common header file.

oal_event.h Event header file.
oal_isr.h ISR header file.
oal_mutex.h Mutex header file.
oal_task.c Task source file.
oal_task.h Task header file.

4.3 Version File

The file src/version/ver_oal.h contains the version number of this module. This version number is checked
by all modules that use this module to ensure system consistency over upgrades.

4.4 API Interface Files

Note: These files are not part of this base package, but every RTOS-specific package has a set of files
in its src/oal/os folder. These files, which all have the prefix oalp_, contain the RTOS port of the OAL
functions and types.

Copyright HCC Embedded 2015 9 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

5 Configuration Options

Set the base configuration options in the file src/config/config_oal.h. Different packages may require
different components so, in order to avoid including needless elements, every package has its own
configuration file, src/config/config_oal_os.h.

5.1 config_oal.h

The base configuration options are set in the src/config/config_oal.h configuration file. This section lists
the available configuration options, which define which components of the OAL are included. All of these
have the default value of 1.

Note: Some HCC modules contain conditional compilation options that use these configuration
options.

OAL_TASK_SUPPORTED

By default the OAL, as implemented, supports the oal_task_xxx() functions. Set this to 0 to disable support
for these functions.

OAL_TASK_GET_ID_SUPPORTED

By default the OAL, as implemented, supports the oal_task_get_id() function. Set this to 0 to disable
support for this function.

OAL_TASK_SLEEP_SUPPORTED

By default the OAL, as implemented, supports the oal_task_sleep() function. Set this to 0 to disable
support for this function.

OAL_MUTEX_SUPPORTED

By default the OAL, as implemented, supports the oal_mutex_xxx() functions. Set this to 0 to disable
support for these functions.

OAL_EVENT_SUPPORTED

By default the OAL, as implemented, supports the oal_event_xxx() functions. Set this to 0 to disable
support for these functions.

OAL_ISR_SUPPORTED

By default the OAL, as implemented, supports the oal_isr_xxx() functions. Set this to 0 to disable support
for these functions.

Copyright HCC Embedded 2015 10 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

5.2 RTOS Integration

This section describes two files within an OAL package for a specific OS that control how the OS is used
Each OS abstraction must have a version of these two files.

oal/os/oalp_defs.h

All RTOS ports must have an oal/os/oalp_defs.h file with the following definitions:

Note: This section describes what must be provided by the OS abstraction of a specific OS. If this is
already provided then you just need to include that file.

OAL_TASK_POLL_MODE

Enable this to have tasks polled. Only set this when there is no OS. The default is 0.
OAL_PREEMPTIVE

Enable this for a preemptive system. The default is 1.
OAL_STATIC_TASK_STACK

Enable this if the stack of a task needs to be allocated statically. The default is zero.
OAL_INTERRUPT_ENABLE

Enable this to allow interrupts. The default is 1; only set this to 0 if there is no OS.

If there is no OS this option is in the file config_oal.h since the user can decide whether it is required.
OAL_USE_PLATFORM_ISR

Enable this to use platform ISR routines. The default is 1.

OAL_TICK_RATE

The tick rate in ms. The default is 10. If this varies depending on the port or platform, or if there is no
variable in the RTOS to obtain this value, then it must be in config_oal.h.

config_oal_os.h

All RTOS ports must have a config_oal_os.h file with the following definitions:

OAL_HIGHEST_PRIORITY, OAL_HIGH_PRIORITY, OAL_NORMAL_PRIORITY, OAL_LOW_PRIORITY,
OAL_LOWEST_PRIORITY

Lower numbers mean a higher priority. By default these are respectively 5, 10, 15, 20, and 25.

Copyright HCC Embedded 2015 11 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

OAL_EVENT_FLAG

The event flag to use for user tasks invoking internal functions. One task calls an internal function that
needs to wait for an event.

The value of this flag should be over 0x80 because lower bits might be used by internal tasks. The default is
0x100.

OAL_TASK_COUNT
The maximum number of tasks. The default is 8.

This option is required if an OS has any parameter that needs to be predefined in order to create a task. In
this case this parameter can define the number of required entities.

OAL_ISR_COUNT
The maximum number of interrupt sources. The default is 4.

This is optional and its presence depends on the OS. For example, if there is a need for a wrapper function
for every ISR, these have to be pre-written somewhere so this option would have to be defined.

Copyright HCC Embedded 2015 12 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

6 System Design

This section gives basic information on events, ISRs, mutexes and tasks.

6.1 Events
Within the RTOS's files:

® oal/os/oalp_event.c contains the port of the functions.
® oal/os/oalp_event.h defines oal _event t, the event type.

Event Groups and Flags

The OAL expects event groups and each event group has event flags (event bits).

Note: There are many types of RTOS and these have different mechanisms and terminology for
events. For example there are some where "event" as a term is not even known, and we translate this
using group semaphores, messages and so on as appropriate to replicate our desired behaviour for
events.

The oal_event _t structure defines the type of the event. There are two types of RTOS:

®* |In one RTOS type the event has a specific type and the task waits for a flag in this event.

* In the other the RTOS sends an event to the specific task (without the need for a global event). Here
the type of oal_event tis not important but you should define it for compatibility reasons. Here
oal_event_create() probably needs to do nothing.

The purpose of the OAL_EVENT_FLAG varies as follows:

® |f an RTOS waits for a flag in a statically allocated event, then the value of OAL_EVENT_FLAG is
irrelevant.
® |f a task needs to wait for an event flag in its dedicated event group, then only flags below
OAL_EVENT_FLAG can be used for internal purposes. In this case there are two possibilities:
® User task -> HCC function -> event wait(OAL_EVENT_FLAG) -> return to user function.
®* HCC task -> waits for an internal event -> event received -> HCC function -> event_wait
(OAL_EVENT_FLAG) -> return to HCC task.

Copyright HCC Embedded 2015 13 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

6.2 Interrupt Service Routines - ISRs
Within the RTOS's files:

® oal/os/oalp_isr.c contains the port of the functions.
® oal/os/oalp_isr.h defines oal isr_id t, the ISR identifier.

ISR Functions

Depending on the RTOS, ISR functions may be platform-specific or RTOS-specific. The platform
determines whether oal_xxx() functions are used, or whether these are mapped to psp_xxx() functions. If it
allows you to create an ISR invoking RTOS calls, OAL_USE_PLATFORM_ISR must be set to 0.

All ISR functions must be defined as follows.

In the .c file:

OAL_I SR _FN(my_i sr)
{
OAL_| SR _PRE;
ny code

OAL_| SR_PCST;

In the .h file:

QAL_I SR FN(my_isr);

Optional Files

There are two optional files, psp/target/isr/psp_isr.h and psp/target/isr/psp_isr.c.
These are used as follows:

® |f OAL_USE_PLATFORM_ISR is set, this should contain everything defined in oalp_isr.h and
oalp_isr.c. In this case, note that all oal_/OAL_ prefixes should become psp_/PSP_.

* |f OAL_USE_PLATFORM_ISR is not set, the modules can still be present and can provide platform-
specific information to the oal_isr module. For example, if the vector number and priority can only be
obtained with some additional steps based on oal_isr_dsc_t->id then helper functions can be placed
here.

Copyright HCC Embedded 2015 14 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

6.3 Mutexes

Within the RTOS's files:

® oal/os/oalp_mutex.c contains the port of the functions.

® oal/os/oalp_mutex.h defines oal _mutex t, the mutex type.

6.4 Tasks

Within the RTOS's files:

® oal/os/oalp_task.c contains the port of the functions.

® oal/os/oalp_task.h defines oal _task id_t, the task ID type.

Creating Tasks

Where possible, create a task from the module which uses it.

In some cases tasks cannot be dynamically created, in which case refer to the manual for information on the
required task. However all functions in this section should be present for compatibility reasons.

All tasks must be defined as follows.

In the .c file:

OAL_TASK_FN(ny_t ask)
{

int my_var;

OAL_TASK_PRE;

In the .h file:

OAL_TASK_FN(my_t ask);

Copyright HCC Embedded 2015 15

www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

7 Application Programming Interface

This section documents the Application Programming Interface (API). It includes all the functions that are
available to an application program.

7.1 Event Functions

oal_event_create

Use this function to create/initialize an OAL event.

Format

oal _ret_t oal _event_create (oal _event_t * p_event)

Arguments
Argument Description Type
p_event A pointer to the event. oal_event t*

Return Values

Return value Description
OAL_SUCCESS Successful execution.
Else See Error Codes.

Copyright HCC Embedded 2015 16 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal_event_delete

Use this function to delete an OAL event.

Format

oal _ret_t oal _event_delete (oal _event_t * p_event)

Arguments
Argument Description Type
p_event A pointer to the event. oal_event t*

Return Values

Return value Description
OAL_SUCCESS Successful execution.
Else See Error Codes.

Copyright HCC Embedded 2015 17 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal_event_get

Use this function to wait for an event.

Format

oal _ret_t oal _event_get (
oal _event _t * p_event,
oal _event _flags_t wf | ags,
oal _event _flags_t * sfl ags,
oal _event _ti nmeout _t timeout)

Arguments
Argument Description Type
p_event A pointer to the event. oal_event t*
wflags Flag(s) to wait for (multiple flags are allowed). oal_event_flags_t
sflags Flags set if the event is obtained. oal_event_flags_t*
timeout Time to wait for an event (in ms). oal_event_timeout_t

Return Values

Return value Description
OAL_SUCCESS Successful execution.
Else See Error Codes.

Copyright HCC Embedded 2015 18 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal _event_set

Use this function to set an event from a non-interrupt/interrupt.

Format

oal _ret _t oal _event_set (

oal _event _t * p_event,
oal _event _flags_t fl ags,
oal _task_id_t task_id)
Arguments
Argument Description Type
p_event A pointer to the event. oal_event t*
flags The event flags to set. oal_event flags t
task_id The destination task ID (this may not be required). oal_task_id_t

Return Values

Return value Description
OAL_SUCCESS Successful execution.
Else See Error Codes.

Copyright HCC Embedded 2015 19 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal _event_set_int

Use this function to set an OAL event from an interrupt.

Format

oal _ret_t oal _event_set_int (

oal _event _t * p_event,
oal _event _flags_t fl ags,
oal _task_id_t task_id)
Arguments
Argument Description Type
p_event A pointer to the event. oal_event t*
flags The event flags to set. oal_event flags t
task_id The task ID (this may not be required). oal_task_id_t

Return Values

Return value Description
OAL_SUCCESS Successful execution.
Else See Error Codes.

Copyright HCC Embedded 2015 20 www.hcc-embedded.com

http://doc.hcc-embedded.com//display/OAL/Event+Definitions

HCC OS Abstraction Layer (Base) User Guide

7.2 ISR Functions

These functions handle Interrupt Service Routines (ISRs).

Note: If OAL_USE_PLATFORM_ISR is enabled, the oal_xxx() functions shown here are mapped to
psp_xxx() functions. See Interrupt Service Routines - ISRs.

oal_int_enable

Use this function to enable global interrupts.

Format

oal _ret_t oal _int_enable (void)

Arguments

Argument

None.

Return Values

Return value Description
OAL_SUCCESS Successful execution.
Else See Error Codes.

Copyright HCC Embedded 2015 21 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal_int_disable
Use this function to disable global interrupts.

Format
oal _ret_t oal _int_disable (void)

Arguments

Argument

None.

Return Values

Return value Description
OAL_SUCCESS Successful execution.
Else See Error Codes.

Copyright HCC Embedded 2015 22 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal _isr_install
Use this function to install the ISR module.

Format

oal _ret_t oal _isr_install (

const oal _isr_dsc_t * i sr_dsc,
oal isr_id t * isr_id)
Arguments
Argument Description Type
isr_dsc The ISR descriptor. oal_isr_dsc t*
isr_id Returns the ISR ID. oal_isr_id t*

Return Values

Return value Description
OAL_SUCCESS Successful execution.
Else See Error Codes.

Copyright HCC Embedded 2015 23 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal_isr_enable

Use this function to enable an ISR.

Format

oal _ret_t oal _isr_enable (oal _isr_id_t isr_id)

Arguments
Argument Description Type
isr_id The ISR ID. oal isr_id_t

Return Values

Return value Description
OAL_SUCCESS Successful execution.
Else See Error Codes.

Copyright HCC Embedded 2015 24 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal_isr_delete

Use this function to delete an ISR.

Format

oal _ret_t oal _isr_delete (oal _isr_id_t isr_id)

Arguments
Argument Description Type
isr_id The ISR ID. oal isr_id_t

Return Values

Return value Description
OAL_SUCCESS Successful execution.
Else See Error Codes.

Copyright HCC Embedded 2015 25 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal_isr_disable
Use this function to disable an ISR.

Format

oal _ret_t oal _isr_disable (oal _isr_id_t isr_id)

Arguments
Argument Description Type
isr_id The ISR ID. oal isr_id_t

Return Values

Return value Description
OAL_SUCCESS Successful execution.
Else See Error Codes.

Copyright HCC Embedded 2015 26 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

7.3 Mutex Functions

oal_mutex_create

Use this function to create a mutex.

Format

oal _ret_t oal _nutex_create (oal _mutex_t * p_nutex)

Arguments
Argument Description Type
p_mutex A pointer to the mutex. oal_mutex_t*

Return Values

Return value Description
OAL_SUCCESS Successful execution.
Else See Error Codes.

Copyright HCC Embedded 2015 27 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal_mutex_delete

Use this function to delete a mutex.

Format

oal _ret_t oal _nutex_delete (oal _mutex_t * p_nutex)

Arguments
Argument Description Type
p_mutex A pointer to the mutex. oal_mutex_t*

Return Values

Return value Description
OAL_SUCCESS Successful execution.
Else See Error Codes.

Copyright HCC Embedded 2015 28 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal_mutex_get

Use this function to get a mutex.

Format

oal _ret_t oal _nutex_get (oal _nutex_t * p_nutex)

Arguments
Argument Description Type
p_mutex A pointer to the mutex. oal_mutex_t*

Return Values

Return value Description
OAL_SUCCESS Successful execution.
Else See Error Codes.

Copyright HCC Embedded 2015 29 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal_mutex_put

Use this function to release a mutex.

Format

oal _ret_t oal _nutex_put (oal _nutex_t * p_nutex)

Arguments
Argument Description Type
p_mutex A pointer to the mutex. oal_mutex_t*

Return Values

Return value Description
OAL_SUCCESS Successful execution.
Else See Error Codes.

Copyright HCC Embedded 2015 30 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

7.4 Task Functions

You can create multiple instances by using the oal_task_m_*() functions.

oal_task_m_dsc_init

Use this function to initialize a task descriptor.

Note: You must call this function before using the other oal_task_m_* functions.

Format
oal _ret_t oal _task_mdsc_init (const oal _task_madsc_t * task_dsc)

Arguments

Argument Description Type

task_dsc The task descriptor. oal_task_m_dsc t*
Return Values

Return value Description
OAL_SUCCESS Successful execution.

Else See Error Codes.

Copyright HCC Embedded 2015 31 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal _task_m_create

Use this function to create an instance of an OAL task.

Note:
® You must create the task's descriptor with the macro OAL_TASK_M_DSC and initialize it with
oal_task_m_dsc_init() prior to using this function.
® Delete the created task by using oal_task_m_delete(), not oal_task_delete().

Format

oal _ret_t oal _task_mcreate (

oal _task_ t * p_t ask,
const oal _task_dsc_t * task_dsc,
oal _task_index_t task_i ndex,
oal task_id_ t * task_id)
Arguments
Argument Description Type
p_task On return, a pointer to the task. oal task t*
task_dsc The task descriptor. oal_task_m_dsc_t
*
task_index The index of the task to create. The valid range is O .. (task_dsc- oal_task_index t

>task_count - 1).

Within the task the oal_task_m_get_index() function can be used to
get the task index.

task_id The created task ID. oal_task id t*

Return Values

Return value Description
OAL_SUCCESS Successful execution.

Else See Error Codes.

Copyright HCC Embedded 2015 32 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal _task_m_delete

Use this function to delete a task created by using oal_task_m_create().

Format

oal _ret_t oal _task_mdelete (

oal _task_t * p_t ask,
const oal _task_mdsc_t * task_dsc,
oal _task_id_t task_id)
Arguments
Argument Description Type
p_task A pointer to the task. oal_task t*
task dsc The task descriptor. oal_task m dsc t*
task_id The task ID. oal_task id_t

Return Values

Return value Description
OAL_SUCCESS Successful execution.

Else See Error Codes.

Copyright HCC Embedded 2015 33 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal_task_m_get_index
Use this function to get the index of a task created by using oal_task_m_create().

Format

oal _task_index_t oal _task_m get_index (
const oal _task_mdsc_t * task_dsc,

oal _task_id_t task_id)
Arguments
Argument Description Type
task_dsc The task descriptor. oal_task_m_dsc t*
task_id The created task ID. oal_task id_t*

Return Values

Return value Description
The index of the task, if found Successful operation.
TASK_INDEX_INVALID The task's index is invalid.

Copyright HCC Embedded 2015 34 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal _task create

Use this function to create an OAL task.

When tasks cannot be created dynamically, this function searches for the task described by task_dsc and
sets task id.

Format

oal _ret_t oal task_create (

oal task_ t * p_t ask,
const oal _task_dsc_t * task_dsc,
oal _task_id_t * task_id)
Arguments
Argument Description Type
p_task A pointer to the task. oal task t*
task_dsc The task descriptor. oal_task dsc t*
task_id The created task ID. oal_task_id_t*

Return Values

Return value Description
OAL_SUCCESS Successful execution.

Else See Error Codes.

Copyright HCC Embedded 2015 35 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal task delete

Use this function to delete a caller task.

Format

oal _ret_t oal task_delete (oal _task t * p_task)

Arguments
Argument Description Type
p_task A pointer to the task. oal_task t*

Return Values

Return value Description
OAL_SUCCESS Successful execution.

Else See Error Codes.

Copyright HCC Embedded 2015 36 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal _task get id

Use this function to get the ID of the currently active task.

Format

oal _task_id_t oal _task_get_id (void)

Arguments

Argument

None.

Return Values

Return value

Task ID

Else

Description

The ID of the currently active task.

This can have any value as long as each value returned uniquely identifies a task.

See Error Codes.

Copyright HCC Embedded 2015 37

www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal_task_poll

Use this function to poll all the registered tasks.

Note:

® This function is present only if a non-OS port is used.

® Do not call this function from within a task as recursion may result unless measures are taken to
ensure it does not occur. If a specific task needs to be scheduled then call the task directly. In
general the cleanest solution is only to call this function from a single location outside the
context of any task.

Format

voi d oal _task_poll (void)

Arguments
None.

Return Values

Return value Description
OAL_SUCCESS Successful execution.

Else See Error Codes.

Copyright HCC Embedded 2015 38 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal_task_sleep

Use this function to suspend the caller task.
This suspends the running task for ms milliseconds.

Format

void oal _task_sleep (uint32_t nms)

Arguments
Argument Description Type
ms The number of milliseconds to sleep for. uint32_t

Return Values

Return value Description
OAL_SUCCESS Successful execution.

Else See Error Codes.

Copyright HCC Embedded 2015 39 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal_task_yield

Use this function to yield the current task.

Format

voi d oal _task_yield (void)

Arguments

Argument

None.
Return Values

Return value Description
OAL_SUCCESS Successful execution.

Else See Error Codes.

Copyright HCC Embedded 2015 40 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

7.5 Error Codes

The table below shows all the error codes that are returned by calls to OAL functions.

Return code Value Description

OAL_SUCCESS 0 Successful execution.

OAL_ERR_RESOURCE 1 A resource error caused this operation to fail.
OAL_ERR_TIMEOUT 2 The requested operation timed out before it could complete.
OAL_ERROR 3 An undefined error occurred in the function.

Copyright HCC Embedded 2015 41 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

7.6 Types and Definitions

Event Definitions

oal_event _t
The definition of the type is provided by the RTOS. Refer to the file os/oalp_event.h for the RTOS.
Element Description Type

oal_event t The eventtype. uint32_t

oal_event flags_t
The definition of the type is provided by the RTOS. Refer to the file os/oalp_event.h for the RTOS.
Element Description Type

oal_event flags t The type of event flag. uintl6 t

oal_event_timeout _t

The definition of the type is provided by the RTOS. Refer to the file os/oalp_event.h for the RTOS.
Element Description Type
oal_event flags t The type of timeout used when waiting for an event. uintl6 t

OAL_WAIT_FOREVER is defined as (oal_event_timeout_t)-1;
use this to set an endless wait for an event.

Copyright HCC Embedded 2015 42 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

ISR Definitions

oal_isr_id_t
The ISR identifier is used to refer to the created ISR.
Element Description Type

id The ISR identifier. uint32_t

oal_isr_dsc_t
The oal_isr_dsc _t structure takes this form:
Element Description Type
id The ISR ID. uint32_t

This can be set to anything and used by oal_isr_install() or psp_isr_install().
It can be a vector number, an identifier, and so on.

pri The priority of the ISR. (This is not always required.) uint32_t

fn The ISR function. oal_isr_fn_t

The ISR Function and Code

These are defined as follows:
Element Description Type
OAL_ISR_FN Definition of the ISR function. void fn (void)
OAL_ISR_PRE Code to execute at the beginning of the ISR.

OAL_ISR_POST Code to execute at the end of the ISR.

oal_mutex_t

The definition of the type is provided by the RTOS. Refer to the file os/oalp_mutex.h for the RTOS.

Element Type Description

oal_mutex t uint32_t The mutex type.

Copyright HCC Embedded 2015 43 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

Task Definitions

oal task_id_t

The definition of the type is provided by the RTOS; refer to its os/oalp_task.h file.

Element Type Description

oal task id t uint32_t The task ID type.

oal _task _dsc_t

The oal_task dsc _t structure takes this form:

Element Type Description

name char * The task name.

entry oal_task fn_t The entry point.

priority uint32_t The priority of the task.

stack _size uint32_t The stack required by the task.
stack ptr uint32_t* A pointer to the stack.

This is needed only if the OS needs to have it statically allocated.
(That is, if OAL_STATIC_TASK_STACK).

Copyright HCC Embedded 2015 44 www.hcc-embedded.com

HCC OS Abstraction Layer (Base) User Guide

oal_task_m_dsc_t

The oal _task m_dsc t structure takes this form:

Element Type Description

name char * The task name.

entry oal_task fn_t The entry point.

priority uint32_t The priority of the task.
stack_size uint32_t The stack required by the task.
stack_ptr uint32_t * A pointer to the stack.

This is needed only if the OS needs to have it statically allocated.
(That is, if OAL_STATIC_TASK_STACK).

task_count uint32_t The number of tasks.

p_ids oal_task_id_t* The maximum number of task IDs.

pb_ids used uint8 t* The number of task IDs in use.
OAL_TASK_FN

This defines the function type for the specific RTOS; refer to its os/oalp_task.h file.

#define OAL_TASK FN(fn) void (fn) (void)

OAL_TASK_PRE

This must be written to all tasks as the first instruction after possible variable declarations. If for example
there is a parameter for the task then OAL_TASK_PRE must be defined to (void)param to avoid possible
warnings. For example:

#def i ne OAL_TASK FN(fn) void (fn) (unsigned |ong param
#defi ne OAL_TASK PRE (voi d) param

Copyright HCC Embedded 2015 45 www.hcc-embedded.com

	System Overview
	Introduction
	Feature Check
	Packages and Documents
	Packages
	Documents

	Change History

	Using the Base Package with your RTOS
	Abstraction Example
	Source File List
	Configuration File
	Source Files
	Version File
	API Interface Files

	Configuration Options
	config_oal.h
	RTOS Integration
	oal/os/oalp_defs.h
	config_oal_os.h

	System Design
	Events
	Event Groups and Flags

	Interrupt Service Routines - ISRs
	ISR Functions
	Optional Files

	Mutexes
	Tasks
	Creating Tasks

	Application Programming Interface
	Event Functions
	oal_event_create
	oal_event_delete
	oal_event_get
	oal_event_set
	oal_event_set_int

	ISR Functions
	oal_int_enable
	oal_int_disable
	oal_isr_install
	oal_isr_enable
	oal_isr_delete
	oal_isr_disable

	Mutex Functions
	oal_mutex_create
	oal_mutex_delete
	oal_mutex_get
	oal_mutex_put

	Task Functions
	oal_task_m_dsc_init
	oal_task_m_create
	oal_task_m_delete
	oal_task_m_get_index
	oal_task_create
	oal_task_delete
	oal_task_get_id
	oal_task_poll
	oal_task_sleep
	oal_task_yield

	Error Codes
	Types and Definitions
	Event Definitions
	oal_event_t
	oal_event_flags_t
	oal_event_timeout_t

	ISR Definitions
	oal_isr_id_t
	oal_isr_dsc_t
	The ISR Function and Code

	oal_mutex_t
	Task Definitions
	oal_task_id_t
	oal_task_dsc_t
	oal_task_m_dsc_t
	OAL_TASK_FN
	OAL_TASK_PRE

