
ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 1 www.hcc-embedded.com

ESMTP Client Technical

Reference Manual

Interniche Legacy Document

Version 1.00

Date: 15-May-2017 13:25

All rights reserved. This document and the associated software are the sole property of HCC

Embedded. Reproduction or duplication by any means of any portion of this document without the

prior written consent of HCC Embedded is expressly forbidden.

HCC Embedded reserves the right to make changes to this document and to the related software at

any time and without notice. The information in this document has been carefully checked for its

accuracy; however, HCC Embedded makes no warranty relating to the correctness of this document.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 2 www.hcc-embedded.com

Table of Contents

Introduction ___ 3

ESMTP Capabilities ___ 4

ESMTP Protocol ___ 5

Supported RFCs __ 5

Terminology ___ 6

The Path of an email ___ 7

General Structure of an Email session __ 8

ESMTP Sources, Options __ 9

ESMTP Source Files List ___ 9

ESMTP Build Configuration Options ___ 10

Memory Pools __ 11

Configurable Parameters ___ 12

Formatting of text in email body __ 14

SSL __ 15

SSL Configuration ___ 15

Porting Engineer-provided functions __ 16

Email Application __ 16

Simple example of an ESMTP application __ 16

esmtp_w32testapp.c ___ 17

Callback Functions __ 18

cb_func __ 19

BODYDATACB __ 20

ATTACHDATACB __ 21

API __ 22

esmtp_startsession __ 23

esmtp_param ___ 24

esmtp_exec __ 25

esmtp_quitbyssid __ 26

APIs for providing data for the email body and attachments ___________________________________ 27

Body Data APIs ___ 27

esmtp_body ___ 28

APIs for providing non-ASCII data for an attachment __ 30

esmtp_attachtext ___ 31

esmtp_attachother __ 32

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 3 www.hcc-embedded.com

1 Introduction
The ESMTP module uses the SMTP and (optionally) SSL protocols to send email from a NicheStack client

application to standard email servers on the Internet such as those provided by Yahoo and Google. It could

connect to a localized private email server, as long as that server uses the SMTP protocol and follows

standard email conventions.

The porting engineer must provide an email application that collects the information required for an email

(from, to, data, etc.) and passes that information to ESMTP via calls to the various APIs provided by

InterNiche's ESMTP.

A typical use of ESMTP would be to send periodic reports and status messages from various applications.

However, depending on the needs of your application, the ESMTP APIs could be used to send complex

emails with multiple senders and recipients and multiple attachments of various types.

InterNiche's ESMTP only transmits email, it does not provide incoming email.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 4 www.hcc-embedded.com

1.1 ESMTP Capabilities

ESMTP supports the following email header types:

From

ReplyTo

To

CC

BCC

Subject

There can be multiple entries for: From, TO, CC, and BCC.

ESMTP will accept data from one of five different sources:body

a buffer;

a file;

a function that generates data;

a CLI command;

a script file that executes CLI commands.

As per the email specifications, all data must be ASCII text.body

ESMTP will accept multiple from one of three different sources:attachments

a buffer;

a file;

a function that generates data.

It provides simple APIs for attachments containing standard ASCII data. It can send attachments in a very

large variety of formats, as long as the user application provides the necessary stings for MIME-type, MIME-

subtype, and MIME parameters.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 5 www.hcc-embedded.com

1.2 ESMTP Protocol

ESMTP is capable of providing full TLS/SSL security and encryption for the entire email session. It also

supports PLAIN authentication (username and password) as defined in RFC 4616 and RFC 4954

Supported RFCs

The ESMTP module provide support for the following RFCs:

Current base RFCs for SMTP

RFC 5321 Simple Mail Transfer Protocol

RFC 5322 Internet Message Format

Supporting RFCs for SMTP

RFC 1035 Domain Names – Implementation and Specification

RFC 2045 Multipurpose Internet Mail Extensions (MIME) Part one: Format of Internet Message

Bodies

RFC 2046 Multipurpose Internet Mail Extensions (MIME) Part two: Media Types

RFC 2920 SMTP Service Extension for Command Pipelining

RFC 3207 SMTP Service Extension for Secure SMTP over Transport Layer Secuirty

RFC 4422 Simple Authentication and Security Layer (SASL)

RFC 4616 The PLAIN Simple Authentication and Security Layer (SASL) Mechanism

RFC 4954 SMTP Service Extension for Authentication

Note: Numerous older RFCs have been superseded or made obsolete by those listed here: RFCs 821,

822, 851, 974, 1869, 2197, 2222, 2487, 2821, 2822 and others.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 6 www.hcc-embedded.com

1.3 Terminology

MIME type

A MIME type is a standardized label for describing the type of payload data and allowing for its encoding

and handling. It consists of a type and sub-type, formatted as "type/subtype". The list of media types is

maintained by the IANA. For more information, please refer to RFC2045 and RFC6838.

Base64

Because the SMTP protocol uses certain characters within the data stream as control characters, it cannot

be used to transfer arbitrary binary data without modification. Even some ASCII characters have special

meaning within SMTP. Base64 encoding is a method for encoding a stream of arbitrary data (possibly

binary) into a set of characters that cannot contain any control characters. This is not encryption as anyone

who knows the algoritm can easily decode the data. Data that has been base64 encoded is about 1/3rd

larger than the original stream.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 7 www.hcc-embedded.com

2 The Path of an email
A user application uses ESMTP APIs to pass email addresses and data. The ESMTP module connects to a

remote email server and uses the SMTP protocol to pass the email headers, body, and attachments to the

email server. The email server forwards the email to one or more destination computers. The destination

computer(s) will have an email program that accepts the email and presents it to the recipients.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 8 www.hcc-embedded.com

1.

2.

3.

4.

5.

6.

7.

8.

a.

b.

9.

10.

11.

3 General Structure of an Email session
Each part will be discussed in more detail below.

Application calls esmtp_startsession().

If this is first call to esmtp_startsession, ESMTP will allocate memory pools based on user settable

variables: maxconcursess, esm_membufsize, esm_txbufsize.

ESMTP uses DNS to get the IP address of the server.

Application makes multiple calls to passing the parameters that will be used in the esmtp_param()

header of the message. All parameters are saved in a session-specific memory buffer.

Application calls one of ESMTP's APIs to pass or specify the source of data for the email body.

The application may optionally call any of ESMTP’s attachment APIs to pass attachment parameters

and data.

Application calls esmtp_exec() to indicate that it has passed all of the parameters and ESMTP should

now send the email.

ESMTP will establish a connection to the email server and through a series of SMTP requests and

responses, it will pass all of the information to the server. At the time when it sends the data for the

body or an attachment:

If the data comes from a file it will open, read, and transmit the file data.

If the data comes from an application callback function, it will make one or more calls to that

function, reading and transmitting the data, until the function returns a 0 indicating that it has

passed all of the data.

ESMTP sends a Data Done message to the email server and reads the response which reports

whether or not the email server has accepted responsibility for delivering the email.

ESMTP calls the application’s main callback function passing this final status.

ESMTP closes the session with the email server and makes the space in the memory pools used by

this session available for a new session.

Generally, any error will cause the email session to close. However, if an call returns an esmtp_param()

error, the application can either close the session or make another API call.

An email session starts with the applications call to esmtp_startsession(). It lasts until ESMTP calls the

application’s callback function to give the final status of the email. Once ESMTP establishes a connection to

the email server, the session consists of a series of requests from ESMTP and responses from the email

server. The email server may be busy causing a substantial delay between any request and response.

Today, an email session typically lasts only a few seconds. However, the length is unpredictable. It may last

a minute or more.

Note: The required minimum timeout values specified by RFC 5321 imply that a session could last

much longer than a few minutes.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 9 www.hcc-embedded.com

4 ESMTP Sources, Options

4.1 ESMTP Source Files List

File Description

esmtp.h The internal header file for the ESMTP module.

esmtp_port.h Provides compile-time configuration parameters, the API prototypes

and defines needed by the user.

esmtp.c Contains the main loop, state machine, and the base routines needed

by the state machine. Most functions called by these routines are

located in esmtp_utils.c or esmtpfull.c

esmtp_keycert.c Code and data structures related to the SSL client for ESMTP.

Includes X.509 certificates for various Certicat Authorities.

esmtp_mod.c Code that defines, initializes and starts the ESMTP module.

esmtp_nt.c Code for ESMTP netstat and config CLI commands

esmtp_utils.c Supporting routines called by esmtpapi.c and esmtp.c.

esmtpapi.c Contains code for the API calls.

esmtpfull.c Code for handling email attachments and for starting an SSL client

session

makefile.in Makefile for esmtp directory

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 10 www.hcc-embedded.com

4.2 ESMTP Build Configuration Options

These defines in determine how much of the ESMTP code will be included in the buildipport.h

USE_ESMTP Include EMSTP module

ESMTP_MENUS Include ESMTP CLI commands (netstat and config)

ESMTP_AUTH Include code to for SMTP authorization via username and password.

ESMTP_FULL Include code to create email attachments.

ESMTP_SECURITY Include code to handle SSL connection to the email server

ESMTP_DEBUG Include code to print ESMTP debug messages to the console

ESMTP_DEBUG_VERBOSE Include code to print text of SMTP messages sent and received by ESMTP

DUMPEMAILBUF Include code to dump the contents of the session's memory buffer

Note: DNS_CLIENT and DNSC_GETADDRINFO must be defined with ESMTP.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 11 www.hcc-embedded.com

1.

2.

3.

5 Memory Pools
ESMTP uses memory pools that are preallocated at initialization time. This means that the amount of

memory used by the ESMPT module is determined at initialization time by the configuration parameters.

ESMTP, itself, does not make any other calls to allocate additional memory. However runtime memory

limitations are still possible when SSL is used, because it allocates memory dynamically.

ESMTP uses three memory pools:

ESMTP memory buffer pool. Holds all parameters for an email session.

Transmit buffer pool. Used to store an ESMTP message, or part of a message, while it is being read

from the application and processed (base64 or encryption) before it is transmitted to the email server.

Connection structure pool. Structure used internally by ESMTP to keep track of email session.

The size allocated for each pool is the per-session size of the element times the maximum number of

sessions. The variables that control these sizes are shown in the section below.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 12 www.hcc-embedded.com

6 Configurable Parameters
The configuration variables in the table below have compile time default values defined near the top of

. They also can be changed at dynamically, normally at init time, but also at any time when esmtp_port.h

no email sessions are active.

variable name define name description

maxconcursess DFT_ESM_CONCURSESS Maximum allowable number of concurrent

sessions

esm_membufsize DFT_ESM_MEMBUFSIZE Size of per-session memory buffer used to store

all parameters required for an email session

esm_txbufsize DFT_ESM_TXBUFSIZE Size in bytes of per-session transmit buffer.

esm_maxbufdata ESM_MAXBUFDATA Maximum size of any data field in per-session

memory buffer.

esm_loc_domainname ESM_LOC_DOMAINNAME local domain name in the form “ ”. This is xxx.com

required by the email server

esm_conntmo ESM_CONNTMO Time in seconds before ESMTP will give up trying

to connect to the specified email server.

esmtp_idletmo ESM_IDLETMO Idle time out. The timeout period starts again at

zero () whenever the application makes an API 0

call, when ESMTP sends a request to the server

reads a response.

http://xxx.com

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 13 www.hcc-embedded.com

The configuration parameters below can only be set at compile time by changing the default values in

esmtp_port.h:

ESM_RXBUFSIZE Maximum buffer size for messages from the email server. Most of these

are small, or less than 200 bytes. Some may be 700 bytes or more, but the

important data will be early in the buffer and the rest will be truncated by

ESMTP.

ESMTP_MAXDOMAIN Maximum length of a domain name used in esmtp_param API calls.

ESMTP will send an error if the call contains a larger domain name. RFC

5231 allows up to 254 bytes.

ESMTP_MAXPORTLEN Maximum bytes in the string containing a port number

DFT_VERSION Default IP version that will be used to connect to the email server. If IP_V6

is defined and the servers DNS records only contain IPv6 addresses, then

the connection will use IPv6. Note: This is only meaningful when both IPv4

and IPv6 are present in the build.

ESM_MINFORMATSPACE Size of buffer used to format a single line of text in the email body. (See

"Formatting of text in email body", below)

ESM_MAXWORDSEARCH Maximum number of bytes to search before splitting a word that crosses

the end-of-line boundary. (See "Formatting of text in email body", below)

ESMTP_SRVRDYTMO Maximum time in seconds to wait for a “server ready” message after a

connection has been made to the server

ESMTP_SIMPCMDTMO Maximum time in seconds to wait for a response to an ESMTP request

ESMTP_DATADONETMO Maximum time in seconds to wait for a “data done” response after passing

a complete email to the server. If this timeout occurs, it must be assumed

that the email was not sent.

ESMTP_QUITTMO Maximum time in seconds to wait for the server to send a 221 response

after ESMTP sends a QUIT command to the server. ESMTP will not pass

the final status to the application and free up the session memory until it

receives the 221 response or this timeout occurs. This timeout does not

affect the success status, , of the email.ESM_TYPE_MAILDONE

ESMTP_SSLCLOSEDELAY Time in ticks to allow for the graceful shutdown of the SSL connection

before ESMTP closes the socket and deletes all of the related structures

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 14 www.hcc-embedded.com

7 Formatting of text in email body
ESMTP does some automatic reformatting of text for the body of an email so that it can be transmitted

properly and displayed properly by the recipient’s email display program. The SMTP specifications place a

few requirements for the formatting of each line of text in an email body. Unix uses only a single linefeed

character (ASCII LF) to indicate the end of a line. However, the SNMP specification requires two characters,

carriage return and line feed (CRLF) , to indicate the end of any line. Any bare ‘CR’ or ‘LF’ characters found

in the text must be changed to CRLF.

ESMTP requires that If any line starts with a period, another period must be added so that the line starts

with two periods. The display program will strip of one of the periods.

While ESMTP automatically handles this reformatting, it should be understood that reformatting may require

that the buffer used to hold the data during and after formatting be substantially larger than the original data.

For example, if ESMTP were given a block of text that contained the series of eight bytes:

.LF.LF.LF.LF

then ESMTP would need to expand this to 16 bytes:

..CRLF..CRLF..CRLF..CRLF

The define limits the size of the buffer that will be used for formatting. To be safe, ESM_MINFORMATSPACE

the default is twice as large as an 80 byte line of data. However, if it is known that data passed to ESMTP

already uses CRLFs for line endings, then this buffer can be smaller.

A single line of text in the body should not be longer than about 80 bytes. If a line reaches 78 bytes in length

without a CRLF, then ESMTP will look for a space character indicating the end of a word. When it finds the

space, it will add a CRLF, assuming it has not already found one. limits how far ESM_MAXWORDSEARCH

ESMTP will search for the end of a word following 78 bytes. If it reaches 78 bytes plus

, it will split the line at that point.ESM_MAXWORDSEARCH

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 15 www.hcc-embedded.com

8 SSL
The traditional port for unencrypted email sessions is port 25. Today, very few email servers connected to

the Internet will accept unencrypted email. Nearly all require all email sessions to use the Transport Layer

Security (TLS) protocol, which is more commonly called SSL, the acronym of its predecessor. We use the

term SSL throughout this document.

Email servers follow two different patterns in their use of SSL based on which port number is used for the

connection.

When port 587 is used for the connection, the email session follows the pattern described in RFC 5321. The

session begins in the clear. The client (ESMTP) will send an EHLO (Extended Hello) request, and the email

server will respond with the services that it supports. “STARTTLS” will be listed as one of these services.

ESMTP will begin SSL negotiations and once the connection is secure, it will resend the EHLO and get a

new list of the services supported by the email server for secure connections. The remainder of the email

session will be encrypted.

When port 465 is used, the server expects SSL negotiation to begin as soon as the TCP-level connection is

made. The entire email session will be encrypted from the email server’s first “service ready” message to its

final response to ESMTP’s QUIT request. This method is somewhat more efficient, because there is only

one EHLO request and response.

Use of SSL is entirely transparent to the email application, except for the selection of which port number to

use and the possible verification of X.509 certificates (described in the next section).

8.1 SSL Configuration

The contains code and data structures related to the SSL client component of esmtp/esmtp_keycert.c

the ESMTP module. The data structures include the top-level X.509 certificates that are currently being

used to sign the lower-level X.509 certificates presented by the Google and Yahoo mail servers to ESMTP

(during the SSL/TLS handshake) as a mechanism to identify the sender. Different email servers may use

different Certificate Authorities to provide the top-level signing certificates.

If ESMTP is unable to validate the email server using the X.509 certificates currently in , esmtp_keycert.c

it will report an error. The user will need to replace the certificates in with ones that are esmtp_keycert.c

appropriate for their usage scenario. The certificates presented by the server can be seen in a Wireshark

trace between "Server Hello" and the "Server Hello Done". Your system administrator should be able to

provide you with the required certificates.

For more details see the sections on certificates in the SSL reference documentation included with your

delivery. For more information on the SSL client used by ESMTP, see the section "Using the SSL 'Client

Shim’" in the manual.CryptoEngine and Crypt API Technical Reference

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 16 www.hcc-embedded.com

9 Porting Engineer-provided functions

9.1 Email Application

The porting engineer must provide an email application to drive the email process. It starts by calling

, uses ESMTP’s API calls to pass email parameters and data and then waits for esmtp_startsession()

a finial status as to whether or not the email server accepted responsibility for delivering the email.

9.2 Simple example of an ESMTP application

The APIs and callback functions used in this example will be described in the sections below.

extern void (*mystatus_cb)(int, int, int, int);

extern void (*mybody_cb)(int, char *, int);

int ssid = 0; /* SSID for this email session */

/* Main user application for sending email */

my_esmtp_app()

{

 int rc;

 ssid = esmtp_startsession("gmail.com", "587", ESMCF_USESSL | ESMCF_USEAUTH,

 "login", "password", mystatus_cb);

 rc = esmtp_param(ssid, ESMTP_FROM, "me@example.com");

 rc = esmtp_param(ssid, ESMTP_TO, "you@example.com");

 rc = esmtp_param(ssid, ESMTP_SUBJECT, "This is the email subject");

 rc = esmtp_bodyfunctext(ssid, &mybody_cb); /* Function to create text for body */

 rc = esmtp_exec(ssid); /* Done with parameters. Send email */

}

/* Callback function for obtaining the final status of the email session */

void

mystatus_cb(int ssid, int type, int code, void *data)

{

 switch (type)

 {

 case ESM_TYPE_FATAL:

 dprintf("CALLBACK: ssid=%d type=%d errcode=%d data=%s\n",

 ssid, type, code, data != NULL ? (const char *)data : "NULL");

 break;

 case ESM_TYPE_MAILDONE:

 dprintf("Session %d: Got maildone. Non-fatal errs=%s\n", ssid,

 (char *)data == NULL ? "NONE" : (char *)data);

 break;

 case ESM_TYPE_CLOSED:

 dprintf("Session %d closed non-fatal errs=%s\n", ssid,

 (char *)data == NULL ? "NONE" : (char *)data);

 break;

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 17 www.hcc-embedded.com

 }

}

/* Callback function to create text for the email body

 * Application will write data into "buf" provide by ESMTP

 * On input, "*len" is size of buf

 */

int

mybody_cb(int ssid, char *buf, int *len)

{

 int i;

 static int bytestosend = 600; /* Message body will be 600 'a' characters */

 int outlen = min(*len, 600); /* Number of bytes to write this time */

 for (i = 0; i < outlen; i++)

 buf[i] = 'a'; /* Write 'a' characters into buf */

 len = outlen; / Number of bytes written into buf */

 bytestosend -= outlen;

 if (bytestosend == 0)

 return (0); /* We done. All bytes passed to esmtp */

 return(ESM_CALLAGAIN); /* We have more to write */

}

9.3 esmtp_w32testapp.c

As provided with the source code distribution, the file " " directory extras/esmtp/esmtp_w32testapp.c

provides a simplified example of an email application. It provides examples for how to call ESMTP’s APIs,

and it provides simple versions of the required callback functions.

Often the easiest way to develop your own email application would be to first build it with Visual Studio and

link it in with the ESMTP library in the w32_nichetask_vc project. In this case, you could start with

esmtp_w32testapp.c and follow the instructions in the extras/esmtp/readme.txt file for how to integrate it into

the ESMTP module as a test application. Once it is integrated and running, you could gradually transform

the code into your own application, testing it as you go. Once your application is developed and working,

you would then port it to your target platform.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 18 www.hcc-embedded.com

9.4 Callback Functions

The names of the callback function are unimportant, but these three are required for interraction with the

ESMTP module.

The only required callback function is the cb_func pointer passed with the esmtp_start API. The callback is

used to report the status of the email session. There are two optional callbacks for functions that will be

used to produce data for the email body or to produce data for an email attachment.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 19 www.hcc-embedded.com

cb_func

API Name

cb_func() - Required application callback function used by ESMTP to report

the final status on an email session

Syntax

void (*cb_func)(int, int, int, void *));

Parameters

int

ssid

SSID for this session

int

status

Status for this email session. Defined value are (see esmtp_port.h):

define name value description

ESM_TYPE_FATAL 1 An error occurred which will cause the session to

close. The email was not delivered

ESM_TYPE_MAILDONE 2 Email session closed after the email server accepted

the email. Server responsible for delivery

ESM_TYPE_CLOSED 3 Email session closed without the email server

accepting the email. The email will not be delivered.

int

error

Zero for success or one of the ESMERR codes defined in esmtp_port.h

void

*data

Usually NULL, but may contain a pointer to a string describing one or more non-fatal errors.

Description

This callback is a required parameter for the esmtp_start API. It is used to report the results of the

email session: error value, email delivered, or session closed without email delivery. Most ESMTP

errors are fatal, causing the email session to close. However, errors related to individual email

recipients (improperly formatted, rejected by email server, etc.) are not fatal as long as there is at least

one valid recipient. When called, may contain a pointer to a string of information about one or data

more errors related to recipients.

Returns: Nothing.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 20 www.hcc-embedded.com

BODYDATACB

API Name

BODYDATACB() - Callback function that produces ASCII data for the message

body

Syntax

int (*BODYDATACB)(int ssid, char *buf, int *len);

Parameters

ssid SSID for this session

buf ESMTP provided buffer where the callback function should write the data

len At invocation, the maximum size of 'buf'. Upon return, the number of bytes put in 'buf' by

application

Description

This application callback function is passed to ESMTP by the esmtp_bodyfunctext() API. After an email

session has been opened to the email server and the email headers have been sent, ESMTP will call

this application function to obtain the data for the email body. The function should write from 0 to “len”

bytes of ASCII data into the provided buffer and set the parameter to the number of bytes written.len

Notes

The callback update () in addition to providing the proper return value.must * len

Returns

ESM_CALLAGAIN: After it has sent the data from this call, ESMTP should call the function again

to obtain more data. ESMTP will call the function again at the next opportunity, even if no data

was provided in this call.

0: All data has been passed. Do not call again.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 21 www.hcc-embedded.com

ATTACHDATACB

API Name

ATTACHDATACB() - Callback function that produces data for an attachment

Syntax

int (*ATTACHDATACB)(int ssid, char *buf, int *len);

Parameters

ssid SSID for this session

buf ESMTP provided buffer where the callback function should write the data

len At invocation, the maximum size of 'buf'. Upon return, the number of bytes put in 'buf' by

application

Description

This application callback function is passed by the esmtp_attachfunctext() API if it will produce only

ASCII data, or by the esmtp_attachotherfunc() API if it will produce non-ASCII data.. During email

session, after the email body has been sent to the email server, ESMTP will call this application

function to obtain the data for an email attachment. The function should write from 0 to “len” bytes of

data into the provided buffer and set the “len” parameter to the number of bytes written.

Notes

The callback update () in addition to providing the proper return value.must * len

Returns

ESM_CALLAGAIN: After it has sent the data from this call, ESMTP should call the function again

to obtain more data. ESMTP will call the function again at the next opportunity, even if no data

was provided in this call.

0: All data has been passed. Do not call again.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 22 www.hcc-embedded.com

10 API

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 23 www.hcc-embedded.com

10.1 esmtp_startsession

API Name

esmtp_startsession() - Start an ESMTP session to send one email

Syntax

int esmtp_startsession(char *server, char *port, uint32_t flags, char

*username, char *password, void (*cb_func)(int, int, int, void *));

Parameters

server domain name of email server

port port to use on email server

flags bit field where the bits represent features for this email session

ESMCF_USESSL 0x01 Use SSL to connect to server

ESMCF_USEAUTH 0x02 Authenticate via usernames and passwords

ESMCF_IP4 0x04e Prefer IPv4 for this connection to server

ESMCF_IP6 0x08 Prefer IPv6 for this connection to server

username user name for users account on specified email server

password password for users account on specified email server

cb_func application callback function that ESMTP module will use to report final email status

Description

This routine is used to pass the basic parameters for an email session. ESMTP will:

validate the parameters

alloc the required ESMPT memory pools if they do not already exist

Use DHCP to obtain an IP address for the specified server

Save the session parameters in the session memory pool

Return the SSID to be used with all APIs and callback functions.

Returns

Positive Session ID (SSID) or one of the negative error codes listed in esmtp_port.h

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 24 www.hcc-embedded.com

1.

2.

10.2 esmtp_param

API Name

esmtp_param() - Store a single parameter (from, to, etc) for current mail

session.

Syntax

int esmtp_param(int ssid, uint16_t type, char *param);

Parameters

ssid value returned by esmtp_startsession()

type One of the first 6 non-data parameter types defined in .h:esmtp_port

ESMTP_FROM

ESMTP_REPLYTO

ESMTP_TO

ESMTP_CC

ESMTP_BCC

ESMTP_SUBJECT

param String containing a single parameter.

Description

This API is used to pass parameters used in the header fields of the email message. Only one

parameter may be passed with each call. All addresses must be in the form: mailbox@domain name (e.

g.). A separate call must be made to pass each address. All of the calls that emailname@yahoo.com

take an address may be called multiple times.

The call is repeated for each parameter.

Notes:

The address used for ESMTP_FROM must be a registered user on the email server specified in

the esmtp_startsession() call.

The must be at least one call to ESMTP_FROM and there must be at least one recipient.

Returns

0 for success or one of the negative esmtp error codes.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 25 www.hcc-embedded.com

1.

2.

3.

10.3 esmtp_exec

API Name

esmtp_exec() - Execute the email command

Syntax

int esmtp_exec(int ssid);

Parameters

ssid value returned by esmtp_startsession()

Description

This API tells ESMTP that the user has finished passing all parameters for this email session and

ESMTP should send the email. ESMTP will:

open a session with the specified email server

use the SMTP protocol to pass all of the header and data information to the email server.

Obtaining the data for the email body may require opening and reading a specified file or making

one or more calls to a callback function that produces email body data.

Call the session cb_func to report the final status of the email.

Returns

0 for success or one of the negative esmtp error codes.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 26 www.hcc-embedded.com

10.4 esmtp_quitbyssid

API Name

esmtp_quitbyssid() - Close (abort) an active email session

Syntax

int esmtp_quitbyssid(int ssid);

Parameters

ssid value returned by esmtp_startsession()

Description

This API is used to abort an active email session. It may be used at any time between the call to

esmtp_startsession() and ESMTP’s call to the cb_func that indicates the final status of the email

session. If ESMTP has already opened an SNTP connection to the email server, it will send an SMTP

QUIT command. All session memory will be freed as a result of this command.

Calling this API after ESMTP’s call to the application’s callback function will result in a

ESMTP_CONN_NOTFOUND error.

Returns

0 for success or one of the negative esmtp error codes.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 27 www.hcc-embedded.com

10.5 APIs for providing data for the email body and attachments

There are 11 APIs that the application can use to provide data for email messages. Five are for providing

data for the body, one for each possible source of the data. There are only three possible sources for

attachment data, but there are separate APIs depending on whether the data is entirely ASCII text or it may

contain non-textual data.

10.6 Body Data APIs

An application can provide ESMTP the data for the email body via one of the five sources listed in the table

above. There is an application API for each source:

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 28 www.hcc-embedded.com

esmtp_body

API Name

esmtp_body - Create the message's "body"

Syntax

Data from buffer

int esmtp_bodybuftext(int ssid, char *bufptr);

Data from file

int esmtp_bodyfiletext(int ssid, char *filename);

Data from Function

int esmtp_bodyfunctext(int ssid, BODYDATACB funcptr);

Data from Command

int esmtp_bodyclicmdtext(int ssid, char *cmdstr);

Data from script

int esmtp_bodyscripttext(int ssid, char *scriptname);

Parameters

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 29 www.hcc-embedded.com

ssid Value returned by .esmtp_startsession()

bufptr Pointer to an application provided buffer containing ASCII data. The end of the data is

indicated by a NUL. There cannot be any other NULs or non-ASCII data preceding this

NUL. The buffer and the data must remain constant until the email has been accepted

by the email server as indicated by a call to the application's main callback function.

filename Pointer to the name of a file that ESMTP can open and read. In the NicheStack demo

for Windows, the file must be in the same directory as (e.g.: "iniche.exe src41

")./ReferencePorts/w32_nichetask_vs

funcptr Pointer to an application provided callback function. While the email session between

ESMTP and the email server is in progress, ESMTP will call this one or more times to

obtain the data for the body (See description of)BODYDATACB()

cmdstr Pointer to a NUL terminated CLI command string where the string is a command name

plus any parameters exactly as it would be typed at a console. This string must remain

constant until the email has been accepted by the email server as indicated by a call

the application's main callback function. Note: This is only available for the message

body

scriptname Pointer to the name of a script file that ESMTP can open and read. The script file will

contain one or more CLI command strings. Note: This is only available for the message

body

Description

These APIs tell ESMTP how to obtain the data for the body of an email. There is a separate API for

each of the five possible sources of data. The second parameter of each API is a pointer a specific

type of source. A single email can only have one body, so only one of these calls can be used with

each email. In all cases, the body can only contain ASCII data.

Returns

0 for success or one of the negative ESMTP error codes.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 30 www.hcc-embedded.com

10.7 APIs for providing non-ASCII data for an attachment

CLI commands and scripts cannot be used to provide attachment data. An application can provide

attachment data to ESMTP via one of three sources. There is an application API for each source.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 31 www.hcc-embedded.com

esmtp_attachtext

API Name

esmtp_attachtext - Create an ASCII Attachment

Syntax

int esmtp_attachbuftext(int ssid, char *buf, char *displayname);

int esmtp_attachfiletext(int ssid, char *filename, char *displayname);

int esmtp_attachfunctext(int ssid, ATTACHDATACB funcptr, char

*displayname);

Parameters

ssid Value returned by .esmtp_startsession()

buf Pointer to an application provided buffer containing ASCII data. The end of the data is

indicated by a NUL. There cannot be any other NULs or non-ASCII data preceding

this NUL. The buffer and the data must remain constant until the email has been

accepted by the email server as indicated by a call to the application's main callback.

filename Pointer to the name of a file that ESMTP can open and read. In the NicheStack demo

for Windows, the file must be in the same directory as (example: "iniche.exe

").src41/ReferencePorts/w32_nichetask_vs

funcptr Pointer to an application provided callback. While the email session between ESMTP

and the email server is in progress, ESMTP will call this one or more times to obtain

the data for the body or an attachment (See BODYDATACB and ATTACHDATACB).

displayname Suggested display name. It should not contain path information. If the attachment

data comes from a file, the display name need not be the same as the source file

name. The sending application can only suggest a name to be used. It cannot

suggest path information. The email display program on the final delivery system

makes the final determination of the name displayed for an attachment.

Description

These APIs tell ESMTP how to obtain the data for one email attachment. There's a separate API for

each of the 3 possible sources of data. The second parameter is a pointer to a specific type of source.

An email may have multiple attachments, so any of these APIs may be called multiple times.

Returns: 0 for success or one of the negative ESMTP error codes.

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 32 www.hcc-embedded.com

esmtp_attachother

API Name

esmtp_attachother - Create a Non-ASCII Attachment

Syntax

int esmtp_attachotherbuf(int ssid, uint8_t *buf, char *displayname, int

numbytes,char *mimetype, char *mimesubtype, char *mimeparam);

int esmtp_attachotherfile(int ssid, char *filename, char *displayname, char

*mimetype, char *mimesubtype, char *mimeparam);

int esmtp_attachotherfunc(int ssid, ATTACHDATACB funcptr, char

*displayname, char *mimetype, char *mimesubtype, char *mimeparam);

ESMTP Client Technical Reference Manual

Copyright HCC Embedded 2017 33 www.hcc-embedded.com

Parameters

ssid value returned by esmtp_startsession()

buf Pointer to an application provided buffer. The buffer and the data must remain

constant until the email has been accepted by the email server as indicated by a call

the application's main callback function.

filename Pointer to the name of a file that ESMTP can open and read. In the NicheStack

demo for Windows, the file must be in the same directory as iniche.exe (src41

)./ReferencePorts/w32_nichetask_vs

funcptr Pointer to an application provided callback function. While the email session

between ESMTP and the email server is in progress, ESMTP will call this one or

more times to obtain the data for the body or an attachment (See description of

 and)BODYDATACB() ATTACHDATACB()

displayname Suggested display name. It should not contain path information. If the attachment

data comes from a file, the display name need not be the same as the source file

name. The sending application can only suggest a name to be used. It cannot

suggest path information. The email display program on the final delivery system

makes the determination of the name displayed for an attachment.

mimetype Pointer to a NUL terminated string name for one of the top-level Media Types as

described in RFC 2046. Other types are possible as long they are understood by the

specified email server. Examples: " ", " ", " "text image Application

mimesubtype Pointer to a NUL terminated string name for a Media subtype. Many subtypes are

possible as long they are understood by the specified email server. Examples: , gif

.octet-stream

mimeparm NULL or a pointer to a NUL terminated string that adds a MIME-type qualifier to the

mimetype and subtype. For example, it may specify a language or a character set.

Description

These APIs tell ESMTP how to obtain the data for one email attachment. An email may have multiple

attachments, so any of these APIs may be called multiple times.

Examples:

esmtp_attachotherfile(3, "pic123", "yourpicture.jpg", image, jpeg, NULL);

esmtp_attachotherfunc(4, sensorfunc, "currdata", "application", "octet-stream", NULL);

Returns

0 for success or one of the negative ESMTP error codes.

	Introduction
	ESMTP Capabilities
	ESMTP Protocol
	Supported RFCs

	Terminology

	The Path of an email
	General Structure of an Email session
	ESMTP Sources, Options
	ESMTP Source Files List
	ESMTP Build Configuration Options

	Memory Pools
	Configurable Parameters
	Formatting of text in email body
	SSL
	SSL Configuration

	Porting Engineer-provided functions
	Email Application
	Simple example of an ESMTP application
	esmtp_w32testapp.c
	Callback Functions
	cb_func
	BODYDATACB
	ATTACHDATACB

	API
	esmtp_startsession
	esmtp_param
	esmtp_exec
	esmtp_quitbyssid
	APIs for providing data for the email body and attachments
	Body Data APIs
	esmtp_body

	APIs for providing non-ASCII data for an attachment
	esmtp_attachtext
	esmtp_attachother

