
InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 1 www.hcc-embedded.com

InterNiche Porting Kit

Reference Manual

Interniche Legacy Document

Version 1.00

Date: 10-May-2017 15:46

All rights reserved. This document and the associated software are the sole property of HCC

Embedded. Reproduction or duplication by any means of any portion of this document without the

prior written consent of HCC Embedded is expressly forbidden.

HCC Embedded reserves the right to make changes to this document and to the related software at

any time and without notice. The information in this document has been carefully checked for its

accuracy; however, HCC Embedded makes no warranty relating to the correctness of this document.

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 2 www.hcc-embedded.com

Table of Contents

Introduction ___ 4

PORT ___ 5

Overview ___ 6

Harness Menu Interface ___ 7

Step-by-Step __ 9

Begin With Something that Works __ 9

Console __ 9

UART basic __ 10

The UART data API: __ 10

The UART device API: __ 10

malloc and free ___ 11

UART - optional ___ 11

OS ___ 12

The OS API ___ 12

The OS Port: osport.h, osporttk.c __ 13

Time __ 13

Ethernet MAC __ 14

PHY __ 16

Checksum - optional ___ 16

Crypt ___ 16

API __ 17

dputchar ___ 18

getch ___ 19

kbhit __ 20

console_only ___ 21

ENTER_CRIT_SECTION, EXIT_CRIT_SECTION __ 22

cksum __ 23

clock_init __ 24

emac_close __ 25

emac_core_enable __ 26

emac_hw_init ___ 27

emac_mac_init ___ 28

emac_phy_read ___ 29

emac_phy_write __ 30

emac_rxtx_init __ 31

emac_send __ 32

eth_prep __ 33

eth_setlink ___ 34

get_cticks __ 35

get_pticks ___ 36

LOCK_NET_RESOURCE, UNLOCK_NET_RESOURCE _____________________________________ 37

TK_BLOCK __ 38

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 3 www.hcc-embedded.com

TK_CREATE ___ 39

TK_DELETE ___ 40

TK_SIGNAL __ 41

TK_SIGWAIT ___ 42

TK_SLEEP __ 43

TK_SUSPEND __ 44

TK_YIELD, tk_yield __ 45

tk_sem_create __ 46

tk_stats ___ 47

tk_sem_free __ 48

n_close ___ 49

n_init ___ 50

n_refill __ 52

n_stats __ 53

pkt_send __ 54

NicheStack Integration ___ 57

Final Steps ___ 57

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 4 www.hcc-embedded.com

1.

2.

3.

1 Introduction
The harness is the name given to a stack-less project used to assist in developing a new target port for

NicheStack. By using this tool, it is possible to develop a complete target port without involving the

complexity of the TCP/IP stack, and when your port is ready it will simply be a matter of linking it into your

complete network-enabled application.

A Port is composed of three major portions:

The controller or processor executing the code;

The Operating System in control of scheduling threads;

The toolchain and device library providing the runtime environment.

Any or all of these components may need to be developed by the harness user or can safely be imported

from other InterNiche-based projects. Before delving too far into use of the harness, be sure to ask

InterNiche if any of the desired portions are already available. Most of this document is concerned with the

chip portion, but the initial steps will discuss the needs of the OS and of the toolchain.

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 5 www.hcc-embedded.com

2 PORT
A Port is composed of three major portions, the chip running the code, the OS in control of scheduling

threads, and to toolchain and device library providing the runtime environment.

PACKET

A PACKET structure. This is a buffer containing a start and a length pointer for both the buffer as a whole,

and the portion contining data. Also included is a pk_next/prev pointer to create a chain of buffers making

up a frame, and the total length of that frame (first PACKET only).

FRAME

A chunk of data that goes out the network interface as a unit. e.g. 802.3 headers + payload + FCS

FCS

Frame check sequence. Not calculated by the stack, driver must do this if not done by hardware.

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 6 www.hcc-embedded.com

3 Overview
As mentioned earlier, a port has three logical components, the operating system interface, the hardware

interface and the toolchain used to create the actual executable image. This document will guide you

through creating a port without involving the actual NicheStack, and will explain how to use the supplied

framework to verify that your port is operational.

The Harness provides two functions. First, it is the instrumentation of the port's entire API. It provides

buffers in exactly the same was as does the NicheStack. Timers execute exactly the same way. Likewise

serial and console i/o, OS task switching cryptographic support, and interrupt handling.

The Harness is used to assist in bringing up the port specific portions of an InterNiche stack on new

hardware/os/toolchains while keeping the complexity and indeterminism out of the process as much as

possible. To this end most of the stack is stubbed out, and a simple menu interface is provided to interact

with the stack.

Along with the harness code, a port directory is provided with skeletons of the required files. Some of these

are expected to be used as is, others will require the engineer to complete functions before certain features

work, these are identified within the harness source code as .TODO:

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 7 www.hcc-embedded.com

4 Harness Menu Interface
The harness menu interface consists of a list of numbered commands, some of which will ask for additional

parameters when executed. These prompts for additional information will provide a default value in square

brackets, just pressing enter will use the default.

A full menu depends on features being enabled in libport.h, the section discussing implementations will note

what they are. Pressing at the prompt will display a menu of commands similar to the following.0

 0. display menu

 1. sleep cticks

 2. sleep pticks

 3. reset

 4. cksum test

 5. critical section test

 10. cfg eth

 11. cfg buf

 12. init eth

 13. reset eth

 14. close eth *

 15. trace pkt recv

 16. pkt recv

 17. send pkt

 30. MD5 validation

 31. SHA1 validation

 35. AES validation

 39. RAND validation

 50. dump queues

 51. dump stats

 52. dump phy registers

The harness has a few items to help with testing portions of the driver. First is the open call, this calls the

setup routines. Once you can pass initialization, you can proceed in one of two directions,

Rx monitoring will show a slightly decoded form for each packet received, the menu interface will return

instantly, but the packet decodes will continue until you invoke the same item again.

Tx will send hand crafted ping packets to a pre-determined MAC/ip address. These should be well formed

enough for the ping'd host to respond and you should see them in the rx path (on the terminal if you have rx

monitoring, in driver printf's if you have not gotten that far yet). It needs mention that the harness will NOT

respond to ARP requests, so the destination needs to have a static ARP entry for the target. The packets

that are crafted for this option are highly fragmented, so will provide a good test of chaining and odd size

/alignments of the buffer start/lengths.

The eth setup option will allow you to change the mac/ip of you and your destination at runtime. or edit the

values in harness_mod.c

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 8 www.hcc-embedded.com

With ethernet done, there is an option to provide an optomized version of the Cksum generation routine.

This routine is called asm_cksum (weither it is or not in asm) and takes a buffer and a count of s uint16_t

to checksum. There is a harness option to verify correctness and also provide performance measures of the

checksum operation.

The harness critical section test simply reads the clock, enters a critical section, spins for a few seconds,

exits the section, then compares the clock. If no more than one tick has happened, you pass.

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 9 www.hcc-embedded.com

5 Step-by-Step

5.1 Begin With Something that Works

The first step is to create a very basic application that can be downloaded to your hardware without

involving any InterNiche code that way you will begin developing your port from a known, working point. We

recommend using some form of "blinking light" program as it will demonstrate that the main chip-specific

initialization, clock and interrupt setup are all working. This program should not include any RTOS

involvement, as adding that complexity at this point may cause difficulty a few steps from now. From this

point, we will add and develop the remaining pieces. This starting point is usually provided by the toolchain

vendor.

5.2 Console

The next step is to address the console. The console interface is split into a upper layer API and a lower

level driver that provides UART level access. If the target has a console other than a UART then you should

replace the default console interface provided by console.c, otherwise leave it as provided and implement

the UART driver and let the console take care of what details it can.

The Console API consists of three routines: , , and .int kbhit() char getch() int putchar()

If you are porting a new toolchain then now is the time to correct the definitions in toolport.h and also how

do wire in the libraries printf/output redirection The output redirection should be implemented in terms of

 or .dputchar uart_putc

Next, you should bring the following files into your project:

console.c

uart_util.c

and the empty uart_drv.c

and add a loop to main:

system_init();

while(1)

{

 if (kbhit())

 {

 dputchar(getch());

 }

}

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 10 www.hcc-embedded.com

5.3 UART basic

The implementation provided with the Harness uses calls to the UART driver's data API using the UART id

of . There is an alternate implementation that uses Unix-like tty access.CONSOLE_UART

If the UART version of the console is to be used, then an implementation of the UART driver is required.

The UART interface is best thought of as having an "upper" and "lower" interface, with the upper interface

controlling the UART data, ane the lower interface controlling the actual device

The UART driver is a buffering IO stream that is sutable for console use, and for PPP. Each device is

provided with two buffers, one for input and one for output. These buffers are accessed by the data API to

provide higher level access to the ports, and by the device API on the hardware side to pass to the external

port. Console access ports can get by with just using the update/kick API to receive/send, but PPP capable

links should use some form of DMA and interript logic to keep up with the character stream.

The UART data API:

The UART data API consists of three routines and should not need modification:

int uart_gotc() - returns a 1 or 0 depending upon whether there is, or is not a character to read.

uart_getc() - get one character from the UART (buffered).

uart_putc() - write one character to the UART (buffered).

The UART device API:

The UART data API consists of four routines that must be implemented by the porting engineer:

USART_Configuration() - pin and power/clock setup for UART.

uart_init() - initialize an instance of the UART driver.

uart_update() - check for UART input, update input buffer.

uart_kick() - transmit character(s) in buffer now (may return as long as data will make it out without

more interaction).

Fill in the UART portions using if you intend to support multiple board layouts. Also fill in hwport.h

 for , and and 's uart_drv.c uart_init uart_update uart_kick sysinit.c

 to setup pins.USART_Configuration()

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 11 www.hcc-embedded.com

5.4 malloc and free

If the standard library provided by your toolchain vendor does not include / , you can use malloc() free()

the provided file to provide them. These will be invoked from , and to avoid alt_memory.c in_memory.c

future confusion you might consider renaming them. The / implementations alt_alloc() alt_free()

work for many situations and also serve as a clean and simple starting point Even if your OS provides them,

we recommend using these simple ones for now, and when you get to the OS stage they can be replaced.

Now it is possible to remove the from your sample project and add the files in from the InterNiche main.c

distribution. Building your project should now produce an image that displays the menu and allows you to

type ' ' for help0

5.5 UART - optional

PPP

If PPP is desired, should be revised to handle higher through channels. Either use flow uart_drv.c

control pins (recommended) or implement a software version of it in the routines. The use of DMA uart_*

to provide timely hardware interaction is also recommended as is using a buffer that can hold at least a full-

sized packet.

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 12 www.hcc-embedded.com

5.6 OS

The OS API

The 'SuperLoop' OS is provided as a reference implementation, if that is the intended target, then you need

not perform this step. To port to an OS you need to fill in osport.h and osporttk.c. Tasking routines first,

TK_CREATE, TK_SUSPEND, TK_RESUME, TK_DELETE, TK_YIELD, TK_SLEEP and then TK_INIT_OS

and TK_START_OS. The InterNiche porting API was designed to easily map to most operating systems but

should you have difficulty, contact . After getting the tasks sorted out, work Support@HCC-Embedded.com

on semaphores and mutexes. Semaphores need only be binary, but may count if desired, where mutexes

should be non-nesting.

Critical sections entry points (located in) now need to be implemented in the routines inport.c

 and . Critical sections should nest, so the section crit_section_enter() crit_section_exit()

should not restore interrupts until all sections have exited. This is done with a counter in the provided

examples, and unless the OS provides this, they will be acceptable.

The OS API consists of the following entry points which should be mapped to the facilities underlying your

chosen RTOS.

ENTER_CRIT_SECTION

critical sections - disable irq

EXIT_CRIT_SECTION

critical sections - re-enable irq (when unnested)

LOCK_NET_RESOURCE

Acquire a mutexTK_BLOCKWait for something to happen

TK_CREATE

Create a new task.

TK_DELETE

Delete a task

TK_SIGNAL

post to a semaphore

TK_SIGWAIT

wait for a semaphore to be posted to

TK_SLEEP

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 13 www.hcc-embedded.com

Wait for n seconds (calls TK_BLOCK)

TK_SUSPEND

Stop a task

TK_YIELD

Relinquish CPU, remain runnable

UNLOCK_NET_RESOURCE

Release a mutex

WAIT_NET_RESOURCE

Try to acquire a mutex, return if not available

The OS Port: osport.h, osporttk.c

The provided skeleton is actually a fully operational OS implementation. Every macro/function needs to be

updated if a different OS is required. The harness utilizes three tasks, console, timers, and packet demux.

The full stack has equivilent tasks, plus some protocols have a task of there own to maintain state.

The provided OS is a copy of SuperLoop, in effect just calls the 'tasks' in a forever loop. It will work while

you develop the chip drivers more completely, or you can replace it now with a port to the target OS.

5.7 Time

Time is kept in a . Both and are held in 32 bit words and rollover is to be uint32_t cticks pticks

expected; at 20Hz (ctick default) this roll over is 6.8 years, 1kHz for pticks is ~50 days. Even so, there are

macros for time comparisons.

If your OS provides a system clock, you need simply point and at it. get_cticks() get_pticks CTICKS

should have a value incrementing at TPS Hz (nominal 20Hz) while may be whatever is native. Use pticks

 to initialize what is needed. Any ISR code should also go in here.intimer.c clock_init()

clock_init

Initialize time base.

get_cticks

TPS ticks since system init (20Hz)

get_pticks

PPS ticks since system init (system dependent speed >= 100Hz)

The harness execution should now be able to execute the sleep tests with the pause before returning to the

menu interface being approperate to the specified delay.

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 14 www.hcc-embedded.com

5.8 Ethernet MAC

Network frame data is held in buffers pointed to by PACKET strutures. PACKETs are reserved from the

heap at startup time and are allocated from a pool by PK_ALLOC. In order to reduce resource requirements

the size of the PACKET buffers is small, normally 128 or 512 bytes, while ethernet frames may be larger.

This is handled by chaining many PACKETS together to produce a single frame of data. There are a

number of functions for manipulating data within the frame that will deal with PACKET crossing and

updating the recordkeeping within them. By convention, it is the responsibility of each protocol layer to

maintain the integrity of the following fields within each PACKET:

nb_tlen The total length (in bytes) of data held in the chain of PACKETs. This required value is only

meaningful in the .first packet of the chain

nb_plen The number of data bytes in the current buffer.

nb_prot The address of the first byte of data in the current buffer.

pk_next,

pk_prev

These values constitute the doubly-linked list of PACKET in the chain.

nb_blen (read only) The size of the buffer as allocated. This value must be .at least 64 bytes

nb_buf (read only) Address of the allocated buffer.

This driver is enabled by setting USE_EMAC in libport.h. Also relivant are USE_EMAC_UTIL and

USE_GENPHY.

The file emac_drv.c is where the example provides entrypoints. Mostly it consists of a few sections of init, a

close, a hand to hardware for TX. a from hardware to PACKET rx, an interupt function, and phy read/write.

The actual driver interface is mostly defined in emac_util.c which contains all the boilerplate code that does

not change.

The driver is given some pre-allocated PACKETs into which it will receive data. When these get used by the

rx logic, they should be replaced by using PACKETS in the togetq that is maintained by the emac_util.c

portion of the driver. This allows the rx PACKETS to be handed to the recieve queue, and the driver to have

something to replenish the space to hand back to the hardware without invoking the PACKET allocation

routine from ISR context, allowing that allocator to be simplified. Similar, for TX completion ISR, put the

finished PACKETS into the 'toputq' and they will get free'd in the mainline context soon.

With an ETHHDR_BIAS of 2, a properly formed packet chain for an inbound 98-byte packet could look like

either of the following:

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 15 www.hcc-embedded.com

In order to keep the ip addresses in the IP header aligned to a word (4 bytes) boundary, it is useful to pad

the ethernet headers from 14 bytes to 16 by shifting the start of the buffers forward two bytes. The

ETHHDR_BIAS define in libport.h is used for this and is part of the value of ETHHDR_SIZE. Some

hardware needs to be told the two byte shifted value, others are configured to do the shifting on their own

and require the normal start of buffer address. This bias is expected to be included in the pointed to nb_prot

for frames being sent, and pointed past along with the ethernet headers on the received frames being

passed to the stack.

The routine points these to functions that call emac_drv entrypointseth_prep

XXX_prep - Device initialization routine

net->n_init - Initialize the hardware

net->n_close - De-initialize the hardware

net->n_stats - network statictics.

net->pkt_send - send a 802.3 packet

net->n_refill - Replenish togetq and free toputq

The file (called by emac_utils.c) should contain the following functions:emac_drv.c

emac_rxtx_init - Prepare descriptors for hw

emac_mac_init - Do the work of initializing the hardware

emac_hw_init - initialize pins and isr

emac_close - deinit isr and hw block

emac_send - put frame worth of PACKETs in descriptors

emac_phy_read - read PHY register

emac_phy_write - write PHY register

eth_setlink - set link speed

emac_phy_status - set phy link status

emac_core_enable - associate hardware with an ethernet instance

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 16 www.hcc-embedded.com

5.9 PHY

The file contains the following functions that should not require changing:phy_generic.c

emac_phy_init - PHY setup.

The file should contain the following functions:phy_XXX.c

phy_link_detect_init - PHY specific initialization and setup for link change irq

A generic PHY implementation is provided in phy_generic.h with one exception, an interface is exposed to

initialize the PHY to cause an interrupt when link is lost or gained, as well as any customer specific PHY init

features that are desired. A usable stub for this is in phy_noirq.c and phy side setup for well known PHYs is

also provided, but they will all need customazation to hook up the irq to the correct source.

5.10 Checksum - optional

asm_cksum() is an accelerated checksum routine that will be used when is NOT defined in C_CHECKSUM

. This routine follows the interface of bud adds the qualifier that the data is 16-bit ipport.h cksum()

aligned.

5.11 Crypt

Hardware assisted crypto is enabled with . There is an example that contians USE_HW_CRYPT sec_drv.c

entrypoints for the known crypt block cyphers and hashes. Fill in the functions to perform the operation

using HW. All of these interfaces are expected to be blocking, so doing a spin wait or yield loop polling

hardware is acceptable.

The harness has options to run a single block thru the cyphers and hashes and verify correctness of the

answer. The vectors were taken from NIST documents.

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 17 www.hcc-embedded.com

6 API

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 18 www.hcc-embedded.com

6.1 dputchar

API Name

dputchar() - Send a character to the console

Syntax

void dputchar(int chr);

Description

The InterNiche CLI routines call in order to display a character on the target system dputchar()

display or monitor port. If such output is not desired, can be implemented as a no-op. Its dputchar()

parameter is an ASCII character that should be displayed on the target system display or monitor

device.

dputchar() should perform newline expansion. If the value of is an ASCII newline character (chr 0xa

) then a newline followed by a carriage return should be output to the display device.

Returns

Nothing.

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 19 www.hcc-embedded.com

6.2 getch

API Name

getch() - Get character from console

Syntax

int getch(void);

Description

kbhit() and are used together to effect CLI input. The stack code calls to getch() kbhit()

determine if a character is available and then if a character is available, calls to return the getch()

value of the character. . should never block for user inputgetch()

Returns

If a character is available at the CLI or system monitor device, returns the ASCII value of that getch()

character. Its return value is undefined if no character is available.

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 20 www.hcc-embedded.com

6.3 kbhit

API Name

kbhit() - Pool for character ready from console

Syntax

int kbhit(void);

Description

kbhit() should return a non-zero value if a keystroke has been entered by a user at the CLI of the

target system. It should not dequeue the character itself from the input device, rather the return value

from should simply poll the device to determine if a character is present. The entered kbhit()

character is retrieved using the function.getch()

Returns

0 if no character had been entered at the input monitor device, non-zero if at least one character is

available.

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 21 www.hcc-embedded.com

6.4 console_only

API Name

console_only() - Stop all threads except console

Syntax

void console_only(void *pio, bool_t dumpsystem)

Parameters

pio Handle for output. If NULL, output goes to stdout.

dumpsystem Non-zero means call the API before suspending tasks.dumpsysinfo

Description

Suspends all tasks, except the console. If dumpsystem is non-zero, it will call the API dumpsysinfo

before suspending tasks. During debugging, an engineer could call this API when a special condition

occurs, e.g., a dtrap. This API is only available when is defined.NPDEBUG

NOTE: The system cannot be returned to a normal state following this API.

Returns

None

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 22 www.hcc-embedded.com

6.5 ENTER_CRIT_SECTION, EXIT_CRIT_SECTION

API Name

ENTER_CRIT_SECTION() - Enter critical section

EXIT_CRIT_SECTION() - Leave critical section

Syntax

#define ENTER_CRIT_SECTION

#define EXIT_CRIT_SECTION

Parameters

None

Description

These two entry points should be designed to be paired around sections of code that must not be

interrupted or pre-empted. Usually, should save the processor interrupt ENTER_CRIT_SECTION()

state and disable interrupts, whereas should restore the processor interrupt EXIT_CRIT_SECTION()

state to what it was before the most recent call to .ENTER_CRIT_SECTION()

See the detailed discussion of these macros see Critical Section Method.

Returns

These return no meaningful value.

Note

Nested calls to ENTER_CRIT_SECTION() and EXIT_CRIT_SECTION() be supported.must

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 23 www.hcc-embedded.com

6.6 cksum

API Name

cksum() - Calculate buffer checksum

Syntax

unsigned short cksum (char *buffer, unsigned word_count);

Parameters

char *buffer /* pointer to buffer to checksum */

unsigned word_count /* number of 16 bit words in buffer */

Description

Returns 16 bit Internet checksum of buffer. Algorithms for this are described in RFC1071.

NOTE: A portable C language version of this routine is provided with the demo packages, however

TCP implementations can spend a significant portion of their CPU cycles in the checksum routine. This

routine is described here to encourage porting engineers to optimize their ports by implementing their

checksum routines in assembly language. An Intel x86 assembly language checksum routine is also

included which can be used on Intel processors as is. Versions for other CPUs are widely available -

contact us if you need help finding one.

Returns

The 16 bit checksum.

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 24 www.hcc-embedded.com

6.7 clock_init

API Name

clock_init - Start the NicheStack clock

Syntax

void clock_init(void);

Parameters

None.

Description

This sets up a periodic call to the function in_tick_hook() at a rate of 100Hz (defined as PPS). It is

possible that the OS timer is faster than this, and there is a provision for skipping n calls before ticking.

If the RTOS does not provide a time base then the port must provide one and handle the irq routing to

get in_tick_hook called.

If the NicheStack clock is disabled, reset all NicheStack clock variables to their initial values and enable

the NicheStack clock. If the NicheStack is already enabled, calls to do nothing. A call clock_init()

to to disable the NicheStack clock is required before the clock can be reenabled.clock_c()

Returns

Nothing

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 25 www.hcc-embedded.com

6.8 emac_close

API Name

emac_close() - Shutdown Ethernet device

Syntax

int emac_close(int index)

Parameters

index interface number in the nets array

Description

Disable the ethernet hardware, and free any allocated resources

Returns

Success(0) or failure (1)

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 26 www.hcc-embedded.com

6.9 emac_core_enable

API Name

emac_core_enable - Enable HW block for ethernet

Syntax

int emac_core_enable(IN_ETH eth)

Parameters

eth Ethernet control block for the intended inteface

Description

Enable the hardware block for the ethernet module, setup any pointers to the block that may need to

be remembered in the IN_ETH structure.

Returns

Success(0) or failure (1)

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 27 www.hcc-embedded.com

6.10 emac_hw_init

API Name

emac_hw_init - Start ethernet interface traffic

Syntax

int emac_hw_init(IN_ETH eth)

Parameters

eth Ethernet control block for the intended inteface

Description

Enable the hardware to start transfering packets, inluding enabling the interrupts. This function is called

from the common ethernet initialization code.

Returns

Success(0) or failure (1)

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 28 www.hcc-embedded.com

6.11 emac_mac_init

API Name

emac_mac_init() - Ethernet interface config

Syntax

int emac_mac_init(IN_ETH eth)

Parameters

eth Ethernet control block for the intended inteface

Description

Initialize the hardware block for operation. This function is called from the common ethernet

initialization code.

Returns

Success(0) or failure (1)

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 29 www.hcc-embedded.com

6.12 emac_phy_read

API Name

emac_phy_read() - Read PHY register

Syntax

unsigned short emac_phy_read(IN_ETH eth, unsigned phyaddr, unsigned phyreg)

Parameters

eth Ethernet control block for the intended inteface

phyaddr address of the PHY

phyreg address of the register to read

Description

Read a register from a ethernet PHY attached to this ethernet block

Returns

16 bit word read from PHY

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 30 www.hcc-embedded.com

6.13 emac_phy_write

API Name

emac_phy_write() - Write PHY register

Syntax

void emac_phy_write(IN_ETH eth, unsigned phyaddr, unsigned phyreg, const

unsigned short data);

Parameters

eth Ethernet control block for the intended inteface what it does

phyaddrvar1 address of the phy what it does

phyregvar2 address of the register to write what it does

data Value to write to the PHY

Description

Write a register from a ethernet PHY attached to this ethernet block.

Notes/Status

Returns

Nothing

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 31 www.hcc-embedded.com

6.14 emac_rxtx_init

API Name

emac_rxtx_init()- Setup ethernet buffer usage

Syntax

int emac_rxtx_init(IN_ETH eth)

Parameters

eth Ethernet control block for the intended inteface

Description

Initialize the rx and tx descriptors and packet queues. This function is called from the common ethernet

initialization code.

Returns

Success(0) or failure (1)

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 32 www.hcc-embedded.com

6.15 emac_send

API Name

emac_send() - Process the outgoing packet queue

Syntax

void emac_send(IN_ETH eth);

Parameters

eth Ethernet control block for the intended inteface

Description

Invoke the send logic to see if any of the queued packets are able to be passed to the hardware. This

routine is called from the common ethernet code from within the function called by .net->pkt_send

Notes/Status

Returns

Nothing

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 33 www.hcc-embedded.com

6.16 eth_prep

API Name

eth_prep() - Setup ethernet nets structure

Syntax

int eth_prep(int index)

Parameters

index interface number in the arraynets

Description

Prepare the ethernet interface structure for this device, including populating the interface function

pointers and flags for operation.

Returns

success(1) or failure(0)

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 34 www.hcc-embedded.com

6.17 eth_setlink

API Name

eth_setlink()- Set ethernet link status

Syntax

void eth_setlink(IN_ETH eth, unsigned phyaddr, int speed, bool_t duplex)

Parameters

eth Ethernet control block for the intended inteface

phyaddr address of the phy

speed speed of connection

duplex Full duplex(true) or half (false)

Description

Inform the network driver about a change in link status. This is called from the phy link change ISR and

from the init routines.

Returns

Nothing

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 35 www.hcc-embedded.com

6.18 get_cticks

API Name

get_cticks() - Get slow timer tick count

Syntax

uint32_t get_cticks(void)

Parameters

None.

Description

Counts time since power up. Frequency is TPS (default 20Hz)

Returns

Returns 32-bit tick count of time since power up.

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 36 www.hcc-embedded.com

6.19 get_pticks

API Name

get_pticks() - Get fast timer tick count

Syntax

uint32_t get_pticks(void)

Parameters

None.

Description

Counts time since power up. Frequency is PPS (default 100Hz)

Returns

Returns 32 bit tick count of time since power up.

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 37 www.hcc-embedded.com

6.20 LOCK_NET_RESOURCE, UNLOCK_NET_RESOURCE

API Name

LOCK_NET_RESOURCE() - Resource access lock

UNLOCK_NET_RESOURCE() - Resource access unlock

Syntax

void LOCK_NET_RESOURCE(int resID);

void UNLOCK_NET_RESOURCE(int resID);

void WAIT_NET_RESOURCE(int resID, int timeout);

Parameters

Any of the constants.xxx_RESID

Description

See description of Net Resource Method.

Returns

Nothing.

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 38 www.hcc-embedded.com

6.21 TK_BLOCK

API Name

TK_BLOCK - Relinquish the CPU to another task

Syntax

void TK_BLOCK();

Parameters

None.

Description

The macro is called by the current task when it has no more immediate work to do. In most systems,

this macro is equivalent to TK_YIELD(). Execution of the current task is stopped and execution of the

next task that is ready to run is started.

Notes/Status

See TK_YIELD() for further discussion.

Returns

Nothing

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 39 www.hcc-embedded.com

6.22 TK_CREATE

API Name

TK_CREATE - Create a task

Syntax

int TK_CREATE(void (*code)(void *), char *name, int stack, void *param, unsigned int prio, TASK *taskp);

Parameters

code Pointer to the function to be called when the task is started. This function's prototype is:

void code(void *param)

In a tasking environment, this function should never return.

name NUL-terminated string that is the name of the task.

stack An integer specifying the size of the task's stack in bytes.

param The parameter passed to the ' ' function when the task is started.code

prio An unsigned integer specifying the task's execution priority. If the RTOS does not support

task priorities, ' ' can be zero.prio

taskp A pointer to a variable of type . If ' ' is not NULL, the ID of the created task will TASK * taskp

be stored in ' '.taskp

Description

TK_CREATE() is called to create a task. This may include allocating a task structure, a stack, or other

resources for the task. Note that in some tasking systems the task structures and stack memory are

statically declared and only need to be activated, while in others, such as NicheTask, the tasks and

stacks are allocated from the heap. After the task is created, it is left in the state; SUSPENDED

 must be called to set the task to run.TK_RESUME()

Tasks may be started by the system at any time after creation. Tasks should be coded to test for any

required resources or conditions as they start executing. An example of this is the netmain_mod.c

application tasks, which test the global variable before commencing network I/O.iniche_net_ready

Returns

TK_CREATE returns if the task was successfully created, and otherwise.ESUCCESS EFAILURE

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 40 www.hcc-embedded.com

6.23 TK_DELETE

API Name

TK_DELETE - Delete a task

Syntax

void TK_DELETE(TASK tk);

Parameters

tk Task ID of the task to delete. A value of is equivalent to the ID of the calling task.TK_THIS

Description

Terminates execution of the specified task and deletes the task's control structure and stack. If the task

is self-destructing, execution will continue with the next task that is ready to run.

Returns

Nothing

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 41 www.hcc-embedded.com

6.24 TK_SIGNAL

API Name

TK_SIGNAL - Signal a task from another task

Syntax

int TK_SIGNAL(IN_SEM s);

Parameters

s s is a semaphore object.

Description

When a semaphore is signaled, all tasks that are waiting for the signal (see) are set TK_SIGWAIT()

ready to be run. is similar to except that a signal can occur before a task TK_SIGNAL() TK_RESUME()

is ready to wait for it. In that case, the signal is recorded, and the task's call to will TK_SIGWAIT()

return immediately.

Interrupt handlers should use rather than to wake up a task due to TK_SIGNAL_ISR() TK_SIGNAL()

the asynchronous timing between the calls to and .TK_SIGNAL() TK_SIGWAIT()

Returns

ESUCCESS if the signal was recorded successfully and if there is an error recording the EFAILURE

signal.

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 42 www.hcc-embedded.com

6.25 TK_SIGWAIT

API Name

TK_SIGWAIT - Wait for a signal

Syntax

int TK_SIGWAIT(IN_SEM s, long timeout);

Parameters

s A semaphore object.

timeout The number of cticks to wait for the signal to occur.

Description

Suspends the calling task until the specified semaphore is signaled or until the specified number of

cticks has elapsed. If the semaphore has already been signaled, returns immediately.TK_SIGWAIT()

Returns

ESUCCESS if the signal was received before the timeout elapsed, if there was an error in EFAILURE

signaling the semaphore and if the timeout elapsed before the signal was received.TK_TIMEOUT

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 43 www.hcc-embedded.com

6.26 TK_SLEEP

API Name

TK_SLEEP - Pause a task for a period of time

Syntax

void TK_SLEEP(unsigned long ticks);

Parameters

ticks Number of CTICKs to wait before being scheduled.

Description

Execution of the calling task is suspended for the specified number of system clock ticks (s). On CTICK

InterNiche networking systems, clock ticks are tracked by the variable cticks, and the frequency is

defined by (ticks per second).TPS

Tasks put to sleep with this call may be awakened before the indicated time by a call to .TK_RESUME()

Returns

Nothing

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 44 www.hcc-embedded.com

6.27 TK_SUSPEND

API Name

TK_SUSPEND - Suspend execution of a task

Syntax

void TK_SUSPEND(TASK tk);

Parameters

tk Task ID of the task to be suspended. A task ID value of TK_THIS refers to the current task.

Description

When a task is suspended, the task flags are set to not ready. If the task being suspended is the

current task, it is as if the current task called . The task will not be run again until another TK_BLOCK()

task or interrupt handler calls with the suspended task's ID.TK_RESUME()

Returns

Nothing

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 45 www.hcc-embedded.com

6.28 TK_YIELD, tk_yield

API Name

TK_YIELD () - Relinquish the CPU to another tasktk_yield() - Relinquish the

CPU to another task

Syntax

void TK_YIELD(void);

Parameters

None

Description

TK_YIELD() is called when the task code wants to wait for something to occur - a situation often

referred to as a "busy wait". The primitive must give other tasks a chance to run, yet TK_YIELD()

resume the calling task in a short interval. On a round-robin system like NicheTask this is easy - you

simply mark to current task as runnable an call the round-robin scheduled.

On an RTOS where tasks have priorities, this can be somewhat trickier to implement. These systems

sometimes support a call which will let tasks of equal or greater priority run, by not lower priority tasks.

A task spinning on such a macro would never allow a lower priority task to run.TK_YIELD()

One remedy for this is to code the macro to put the task to sleep for a single clock tick. TK_YIELD()

This will force it to wait a reasonable interval during which lower priority tasks may potentially get some

cycles. The draw back is that even when the system has nothing else to do, the task spinning on will

never be able to utilize all the CPUs power - it will always spend a certain amount of time gratuitously

blocked.

Notes

The macro (same name in lower case) is identical to the uppercase version. It is tk_yield()

supported for historical reasons.

Returns

Nothing

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 46 www.hcc-embedded.com

6.29 tk_sem_create

API Name

tk_sem_create()

Syntax

IN_SEM *tk_sem_create(int16_t maxcnt);

Parameters

maxcnt maximum signal count

Description

Allocate and initialize a semaphore. The macro creates a binary semaphore (max count = SEM_ALLOC

1). However, the function will accept a larger .tk_sem_create() maxcnt

Returns

Pointer to newly created semaphore

Related Macro

SEM_ALLOC()

Macro Definition

#define SEM_ALLOC() tk_sem_create(1)

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 47 www.hcc-embedded.com

6.30 tk_stats

API Name

tk_stats() - Show status for all threads

Syntax

void tk_statsl(void *gio);

Parameters

gio GIO to write output to.

Description

Write status of each task to the provided GIO, information on each task should include things like run

state, stack usage, and anything else that may be interesting to system debug.

Returns

Nothing

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 48 www.hcc-embedded.com

6.31 tk_sem_free

API Name

tk_sem_free()

Syntax

void tk_sem_free(IN_SEM *sem);

Parameters

sem pointer to semaphore to be freed

Description

Free a semaphore and wakeup any tasks listed in the semaphore's .tk_waitq

Returns

Nothing

Related Macro

SEM_FREE()

Macro Definition

#define SEM_FREE(s) tk_sem_free(s)

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 49 www.hcc-embedded.com

6.32 n_close

API Name

n_close() - Accessor to shutdown network interface

Syntax

int n_close(int if_number);

Parameters

int if_number /* index into nets[] for NET to close */

Description

Does whatever is necessary to restore the device and its associated driver software prior to exiting the

application. This function may not be required to do anything on embedded systems which start their

devices at power up and don't have any reason to shut them down. If packet types (i.e.: for IP 0x0800

and for ARP) have been accessed in a lower layer driver, they should be released here.0x0806

Returns

Returns if OK, else one of the codes.0 ENP_

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 50 www.hcc-embedded.com

6.33 n_init

API Name

n_init() - Accessor to startup network interface

Syntax

int n_init(int if_number);

Parameters

int if_number /* interface number, for indexing nets[] */

Description

This routine is responsible for preparing the device to send and receive packets. It is called during

system startup time after has been called, but before any of the other network prep_ifaces()

interface's routines are invoked. When this routine returns, the device should be set up as follows:

Net hardware ready to send and receive packets.

All required fields of the net structure are filled in.

Interface's MIB-II structure filled in as show below.

IP addressing information should be set before this returns unless DHCP or BOOTP is to be

used. See the section titled "."Initialization of net Structure IP Addressing Fields

This will usually include hardware operations such as initializing the device and enabling interrupts. It

does not include setting protocol types. This is handled later (see the section . Upon n_reg_type

returning from this routine it is safe for your hardware's interrupt or receive routines to start enqueuing

received packets in the . Packets which are not IP or ARP will be discarded by the stack.rcvdq

The structure array element that is indexed by should be completely filled in nets[] if_number

when this function returns. Note that the work of filling this structure is shared between

 and this function, so if all structure setup was done in prep_ifaces() nets[] prep_ifaces()

(see) there may be nothing to do here.The 'glue' Layer

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 51 www.hcc-embedded.com

Shown below is an example of code that can be used for setting up the MIB structure for a 10 Mbps

Ethernet interface. The field of the structure points to a structure that is used to n_mib nets[]

contain the MIB information which has already been statically allocated by the calling code. See

RFC1213 for detailed descriptions of the MIB fields. Most of the MIB fields are used only for debugging

and statistical information, and are not critical unless your device is managed by SNMP. The

 field is an exception. It is used by ARP to obtain the hardware's MAC address and ifPhysAddress

MUST be set up correctly for the IP stack to work over Ethernet. Note that although ifPhysAddress

is a pointer, it does not point to valid memory when the MIB structure is created. The porting engineer

should make sure it points to a static buffer containing the MAC address before this function returns.

The size of this address is determined by the media (6 bytes for Ethernet) and should be set in the

 structure member (hardware address length).nets[] n_hal

u_char macaddress[6]; /* should contain interface's MAC address */

nets[if_number]->n_mib->ifDescr = "Ethernet Packet Driver";

nets[if_number]->n_mib->ifType = ETHERNET; /* SNMP Ethernet type */

nets[if_number]->n_mib->ifMtu = ET_MAXLEN;

nets[if_number]->n_mib->ifSpeed = 10000000; /* 10 megabits per second */

nets[if_number]->n_mib->ifAdminStatus = 1;

nets[if_number]->n_mib->ifOperStatus = 1;

nets[if_number]->n_mib->ifPhysAddress = ...macaddress[0]; /* example */

Returns

Returns if OK, else one of the codes.0 ENP_

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 52 www.hcc-embedded.com

6.34 n_refill

API Name

n_refill - Replenish device driver's internal resources.

Syntax

void (*n_refill)(int iface);

Parameters

iface interface number of device to refill

Description

Refills the device's internal packet buffer pool by calling or to obtain packet PK_ALLOC() PK_CONTIG

buffers from the Stack's free packet buffer queues. The 'iface' parameter specifies the index of the

device in the ' ' array. The resource should be locked within the 'nets[iface] FREEQ_RESID

' function prior to allocating the packets. The number of packets and their sizes is dependent n_refill

upon the design of the driver. If there are multiple devices in the system, the developer can implement

a single ' ' function for all of the devices or a separate ' ' function for each device.n_refill n_refill

The ' ' function is called in the function which is normally part of the main n_refill pktdemux()

NicheStack task. The 'n_refill' function should no consider it an error if the device's internal packet

buffer pool cannot be completely refilled.

Returns

Nothing

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 53 www.hcc-embedded.com

6.35 n_stats

API Name

n_stats() - Accessor to get network interface statistics

Syntax

int (*n_stats)(int iface, void *stats);

Parameters

int iface /* interface number to dump statistics for */

void * stats /* pointer to a user defined structure */

Description

OPTIONAL: enables the driver to provide hardware specific information which is not n_stats()

included in the generic MIB-II interface group. This information might include hardware specific error

counters, such as the number of collisions on an Ethernet link; or internal resource information, such as

the status and number of current buffers available on a ring-buffer device. The definition of the ' ' stats

structure and its contents is left to the driver writer. An example is the structure in enet_stats h

./ether.h

Returns

The function returns if it is successful and if an error, such as a parameter value ESUCCESS EFAILURE

out of range, is encountered.

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 54 www.hcc-embedded.com

6.36 pkt_send

API Name

pkt_send() - Insert frame into network driver queue

Syntax

int pkt_send(PACKET pkt);

Parameters

typedef struct netbuf *PACKET

PACKET pkt /* pointer to netbuf structure containing frame to send */

Description

This routine is responsible for sending the data described by the passed parameter and queuing pkt

the parameter for later release by the device driver. If the MAC hardware is idle the actual pkt

transmission of the packet should be started by this routine, else it should be scheduled to be sent later

(usually by an "end of transmit" interrupt (EOT) from the hardware).

The type is described in the section titled ". All PACKET The netbuf Structure and the Packet Queues

the information needed to send the packet is filled into the structure addressed by this type before this

call is made. Some of the important fields are:

pkt->nb_prot; /* pointer to data to send. */

pkt->nb_plen; /* length of data to send */

pkt->net; /* nets[]structure for posting statistics */

The data addressed by may or may not have already been prefixed with a MAC layer pkt->nb_prot

header depending on how the structure associated with the interface () has been nets[] pkt->net

configured. The rule for determining whether the MAC layer header is present or not can be expressed

with the following pseudocode fragment.

if ((pkt->net->n_mibifType == SLIP)

 || (pkt->net->n_mib->ifType == PPP)

 || (pkt->net->n_lnh== 0))

 the packet at pkt->nb_prot is not encapsulated with a MAC header;

else

 the packet at pkt->nb_prot is encapsulated with a MAC header;

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 55 www.hcc-embedded.com

If the if statement in the above pseudocode evaluates to then the packet at is not TRUE nb_prot

encapsulated with a MAC header and it is up to the network interface code to transmit the MAC header

that is appropriate for the network medium (if any). On the other hand, if the "if" statement evaluates to

 then appropriate MAC headers for media such as Ethernet or Token Ring will have been placed FALSE

at the head of the buffer passed by the calling routine and are not the responsibility of this routine;

however some drivers may have to access, strip or modify the MAC header if they are layered on top

of complex lower layers. The ODI routine is an example of this (see).pkt_send() doslib/odi.c

Regardless of whether it is the responsibility of the network interface layer to transmit the MAC header,

it is necessary for the network interface to transmit the bytes starting at plus "any" nb_plen nb_prot

MAC header bias that was used to align the start of the IP header. For Ethernet devices, the macro

 is sometimes defined to 2 bytes, to align the IP header at a 4 byte boundary. Likewise, ETHHDR_BIAS

the number of bytes to transmit in this case would be , if (nb_plen - ETHHDR_BIAS) ETHHDR_BIAS

was defined to non-zero. When all the bytes are sent, the structure addressed by the type PACKET

should be returned to the free queue by a call to , which may be called at interrupt time. Do pk_free()

not free the packet before it has been entirely sent by the hardware, since it may be reused (and its

buffer altered) by the IP stack.

The simplest way to implement this routine is to block (busy-wait) until the data is sent. This allows for

fast prototyping of new drivers, but will generally hurt performance. The usual design followed by

InterNiche in the example drivers is to put the packet in an awaiting_send queue, check to see if the

hardware is idle, and then call a send_next_from_q routine to dequeue the packet at the head of the

send queue and begin sending it. The "end of transmit" ISR (EOT) frees the just sent packet and again

calls the send_next_from_q routine. By moving all the PACKETs through the awaiting_send queue we

ensure that they are sent in FIFO order, which significantly improves TCP and application performance.

If your hardware (or lower layer driver) does not have an end of transmit (EOT) interrupt or any

analogous mechanism, you may need to use the alternative to this function.raw_send()

Slow devices (such as serial links), and hardware which DMAs data directly out of predefined memory

areas, may copy the passed buffer into driver managed memory buffers, free the and return PACKET

immediately; however they should be prepared to be called with more packets before transmission is

complete.

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 56 www.hcc-embedded.com

Interface transmit routines should also maintain system statistics about packet transmissions. These

are kept in the structure that is addressed by the field in each entry. Exact IfMib n_mib nets[]

definitions of all these counters are available in RFC1213. At a minimum you should maintain packet

byte and error counts since these can aid greatly with debugging your product during development and

isolating configuration problems in field. Statistics keeping is best done at EOT time, but can be

approximated in this call. The following fragment of code is a generic example:

/* compile statistics about completed transmit */

eth = (struct ethhdr *)pkt->nb_prot; /* get ether header */

ifc = pkt->net;

if(send_status == SUCCESSFUL) /* send_status set by hardware EOT */

{

 if(eth->e_dst[0] ... 0x01) /* see if multicast bit is on */

 ifc->n_mib->ifOutNUcastPkts++;

 else

 ifc->n_mib->ifOutUcastPkts++;

 ifc->n_mib->ifOutOctets +=pkt->nb_plen;

}

else /* error sending packet */

{

 ifc->n_mib->ifOutErrors++;

}

Returns

Returns if OK, else one of the codes. Since this routine may not be waiting for the packet 0 ENP_

transmission to complete, it is permissible to return a 0 if the packet has been successfully queued for

send or the send is in progress. Error (non-zero) codes should only be returned if a distinct hardware

(or lower layer) failure is detected. There is no mechanism to report errors detected in previous packets

or during the EOT. Upper layers like TCP will retry the packet when it is not acknowledged.

See Also

raw_send

InterNiche Porting Kit Reference Manual

Copyright HCC Embedded 2017 57 www.hcc-embedded.com

7 NicheStack Integration
Your driver is now ready for integration with the full NicheStack.

7.1 Final Steps

Copy the whole port directory into your NicheStack repository under .ReferencePorts

Integrate the files, this involves creating an in the new port directory of the ipport.h ipport.h

NicheStack from the PORT portions of the harness version and the rest from the NicheStack version.

If you are using make" (or gmake), cd to the port directory, and execute make. You may need to fixup

the PORT (port.mk) and TOOLS (tool.mk) defines if you renamed the port while copying.

If you use an IDE, you should create your project now using all of the non-ReferencePort sources,

and the sources from the new port directory. Full details should appear in the NicheStack reference

guide.

You may wish to return to the harness project if you find an issue with port specific portions while

developing with the full stack as may help to isolate the issue.

	Introduction
	PORT
	Overview
	Harness Menu Interface
	Step-by-Step
	Begin With Something that Works
	Console
	UART basic
	The UART data API:
	The UART device API:

	malloc and free
	UART - optional
	OS
	The OS API
	The OS Port: osport.h, osporttk.c

	Time
	Ethernet MAC
	PHY
	Checksum - optional
	Crypt

	API
	dputchar
	getch
	kbhit
	console_only
	ENTER_CRIT_SECTION, EXIT_CRIT_SECTION
	cksum
	clock_init
	emac_close
	emac_core_enable
	emac_hw_init
	emac_mac_init
	emac_phy_read
	emac_phy_write
	emac_rxtx_init
	emac_send
	eth_prep
	eth_setlink
	get_cticks
	get_pticks
	LOCK_NET_RESOURCE, UNLOCK_NET_RESOURCE
	TK_BLOCK
	TK_CREATE
	TK_DELETE
	TK_SIGNAL
	TK_SIGWAIT
	TK_SLEEP
	TK_SUSPEND
	TK_YIELD, tk_yield
	tk_sem_create
	tk_stats
	tk_sem_free
	n_close
	n_init
	n_refill
	n_stats
	pkt_send

	NicheStack Integration
	Final Steps

