
SafeFLASH File System User Guide

Copyright HCC Embedded 2016 1 www.hcc-embedded.com

SafeFLASH File System

User Guide

Version 3.60

For use with SafeFLASH File System versions 4.18 and

above

Date: 21-Apr-2016 13:59

All rights reserved. This document and the associated software are the sole property of HCC

Embedded. Reproduction or duplication by any means of any portion of this document without the

prior written consent of HCC Embedded is expressly forbidden.

HCC Embedded reserves the right to make changes to this document and to the related software at

any time and without notice. The information in this document has been carefully checked for its

accuracy; however, HCC Embedded makes no warranty relating to the correctness of this document.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 2 www.hcc-embedded.com

Table of Contents

System Overview __ 5

Introduction ___ 5

Feature Check ___ 6

Packages and Documents __ 8

Packages __ 8

Documents __ 8

Change History __ 9

Source File List ___ 10

API Interface ___ 10

Configuration File ___ 10

Version File __ 10

SafeFLASH System __ 11

Test Files __ 11

Configuration Options __ 12

System Features ___ 15

Other Media Types __ 15

Power Fail Safety ___ 15

Multiple Open Files in a Volume __ 15

Wildcards __ 15

Static Wear Leveling ___ 16

Getting Started ___ 18

Application Programming Interface ___ 19

Module Management ___ 19

f_init ___ 20

File System API ___ 21

General Management ___ 22

f_enterFS __ 23

f_releaseFS __ 24

f_getlasterror ___ 25

f_getversion __ 26

fs_staticwear ___ 27

Volume Management ___ 28

f_mountdrive ___ 29

f_unmountdrive ___ 32

f_chdrive ___ 33

f_getdrive __ 34

f_checkvolume __ 35

f_format ___ 36

f_get_drive_count __ 37

f_get_drive_list __ 38

f_getlabel __ 39

f_setlabel __ 40

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 3 www.hcc-embedded.com

f_get_oem ___ 41

f_getfreespace __ 42

Directory Management __ 44

f_mkdir __ 45

f_chdir __ 46

f_rmdir __ 47

f_getcwd ___ 48

f_getdcwd __ 49

File Access ___ 50

f_open __ 51

f_close __ 53

f_flush ___ 54

f_read ___ 55

f_write ___ 57

f_getc ___ 59

f_putc ___ 60

f_eof __ 61

f_seteof ___ 62

f_tell __ 63

f_seek ___ 64

f_rewind ___ 66

f_truncate __ 67

f_ftruncate ___ 68

File Management ___ 69

f_delete ___ 70

f_findfirst ___ 71

f_findnext __ 73

f_move __ 75

f_rename __ 76

f_getpermission ___ 77

f_setpermission ___ 79

f_gettimedate ___ 80

f_settimedate ___ 82

f_fstat ___ 84

f_stat ___ 86

f_filelength ___ 87

File System Unicode API __ 89

Unicode Directory Management ___ 90

f_wmkdir ___ 91

f_wchdir ___ 92

f_wrmdir ___ 93

f_wgetcwd ___ 94

f_wgetdcwd __ 95

Unicode File Access __ 96

f_wopen ___ 97

f_wtruncate ___ 99

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 4 www.hcc-embedded.com

Unicode File Management __ 100

f_wdelete ___ 101

f_wfindfirst __ 102

f_wfindnext __ 104

f_wmove __ 106

f_wrename __ 107

f_wgetpermission ___ 108

f_wsetpermission ___ 110

f_wgettimedate ___ 111

f_wsettimedate ___ 113

f_wfilelength ___ 115

Error Codes ___ 116

Types and Definitions ___ 118

W_CHAR: Character and Wide Character Definition ____________________________________ 118

F_FILE: File Handle ___ 118

F_FIND ___ 118

F_WFIND ___ 119

F_STAT Structure ___ 119

F_SPACE ___ 120

Testing the System ___ 121

File System Test ___ 121

Flash Driver Test ___ 121

Configuration Options in testdrv_s.c ___ 122

Integration __ 123

Requirements ___ 123

Stack Requirements ___ 123

Timeouts __ 123

Memory Allocation ___ 123

OS Abstraction Layer ___ 124

PSP Porting ___ 125

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 5 www.hcc-embedded.com

1 System Overview

1.1 Introduction

This guide is for those who want to implement a file system in any combination of RAM, NOR flash, NAND

flash, and Adesto DataFlash.®

The SafeFLASH file system driver is highly portable without compromising excellent performance. In short,

SafeFLASH:

is a package of source code designed for flash file system development in embedded systems.

is a high performance truly fail-safe file system that can be used with all NOR and NAND flash, and

any media that can simulate a block-structured array.

supports dynamic and static wear leveling and provides a highly efficient solution for products in

which data integrity is critical.

The following diagram illustrates the structure of the SafeFLASH file system:

This diagram shows:

The Standard API and intermediate layer. The file is the Standard API multi-thread wrapper.fsmf.c

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 6 www.hcc-embedded.com

The drivers – the basic device architecture includes a high level driver for each general media type.

These drivers share some common properties. The driver handles issues of FAT maintenance, wear

leveling, and so on.

A physical device handler below the driver (except for the RAM driver) performs the translation

between the driver and the physical flash hardware. Separate manuals detail the implementation of

physical handlers for NOR flash, NAND flash, and Adesto DataFlash.®

Generally only the physical handler needs to be modified when the hardware configuration changes (for

example, a different chip type, the number of devices in parallel, and so on). HCC Embedded provides a

range of physical handlers to make the porting process as simple as possible.

Note:

HCC Embedded offers hardware and firmware development consultancy to assist developers

with the implementation of flash file systems.

The SafeFLASH file system was previously known as EFFS-STD. All references to STD in the

code are historical and refer to the file system’s original name.

1.2 Feature Check

The main features of the system are the following:

It conforms to the HCC Advanced Embedded Framework.

It can be used with or without an RTOS.

The code size is just 17 - 20KB.

RAM usage depends on the configuration and flash type. HCC provides a tool for calculating this

number.

It provides fail safety.

ANSI ‘C’.

It supports long filenames.

It supports Unicode 16 names.

It supports multiple open files.

It supports multiple users of open files.

It supports multiple volumes.

It handles media errors.

It supports CRC on files (this is optional).

A test suite is provided.

It offers high relative performance.

It has a cache option.

It supports zero copy.

It supports static wear leveling.

It supports dynamic wear leveling.

It is reentrant.

Common API (CAPI) support.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 7 www.hcc-embedded.com

Secure delete option (NOR flash only).

NOR Flash Support

Supports all NOR flash types.

Easy porting for all known device types.

Sample driver available with porting description.

Adesto DataFlash Support (these devices were previously produced by Atmel)® ®

Supports all devices.

Manages the 10K writes/sector limitation.

Fail-safe implementation of the DataFlash interface.

NAND Flash Support

Supports all NAND flash types.

Error Correction Codes (ECC) algorithm.

Easy porting for all known device types.

Sample driver with porting description.

MCU/NAND controller support.

Note: SafeFLASH does not support removable media and is not recommended for arrays of flash

greater than 4GB. For removable media and very large arrays, we recommend using the HCC FAT or

SafeFAT system, with HCC SafeFTL where NAND flash is required.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 8 www.hcc-embedded.com

1.3 Packages and Documents

Packages

The following table lists the packages that need to be used with this module, and also optional modules

which may interact with this module, depending on your particular system's design:

Package Description

hcc_base_doc This contains the two guides that will help you get started.

fs_safe The SafeFLASH base package.

media_drv_base The Media Driver base package that provides the base for all media drivers that

attach to the file system.

media_drv_ram The RAM Media Driver package, used for creating a RAM drive.

fs_safe_ram The SafeFLASH package for RAM.

fs_safe_nor The SafeFLASH package for NOR flash.

fs_safe_nand The SafeFLASH package for NAND flash.

fs_safe_df The SafeFLASH package for Adesto DataFlash.®

Documents

For an overview of HCC file systems and guidance on choosing a file system, see on Product Information

the main HCC website.

Readers should note the points in the on the HCC documentation website.HCC Documentation Guidelines

HCC Firmware Quick Start Guide

This document describes how to install packages provided by HCC in the target development environment.

Also follow the when HCC provides package updates.Quick Start Guide

HCC Source Tree Guide

This document describes the HCC source tree. It gives an overview of the system to make clear the logic

behind its organization.

HCC SafeFLASH File System User Guide

This is this document.

http://www.hcc-embedded.com/embedded-systems-software-products/file-system/nand-nor-flash-file-systems
https://doc.hcc-embedded.com/display/HCCDocRoot/HCC+Documentation+Guidelines

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 9 www.hcc-embedded.com

Other HCC SafeFLASH Guides

These describe how to use SafeFLASH with the various drivers/physical handlers:

HCC SafeFLASH File System RAM Drive User Guide – documents the SafeFLASH RAM driver.

HCC SafeFLASH File System NAND Drive User Guide – documents the SafeFLASH NAND setup.

HCC SafeFLASH File System NOR Drive User Guide – documents the SafeFLASH NOR setup.

HCC SafeFLASH for Adesto DataFlash Drives User Guide – documents the SafeFLASH Adesto ®

DataFlash setup.

1.4 Change History

This section includes recent changes to this product. For a complete list of all changes, refer to the file src

 in the distribution package./history/safe-flash/safe-flash.txt

Version Changes

4.18 Eliminated compiler warnings.

4.17 Writing to "a", "a+", "w", "w+" files and concurrent access to these files and "r" files are handled

identically as in the standard C library.

New test cases added to to cover the above.f_dotest()

4.16 The file can be compiled with the latest package.testport_ram_s.c fs_safe_ram

4.15 Discardable sectors are collected in a dedicated buffer to speed up , which is called _fg_flush()

after most of the file system operations. The size of this buffer is set by the new

FS_DISCARD_BUF_SIZE configuration option.

4.14 Fixed Keil RTX compatibility issue: mutex was released before being deleted.

4.13 Fixed problem that meant write tests failed if there was not enough space. The code now

checks for free space before writing.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 10 www.hcc-embedded.com

2 Source File List
This section lists all the files included in the file system. These files follow HCC Embedded's standard

source tree system, described in the . All references to file pathnames refer to HCC Source Tree Guide

locations within this standard source tree, not within the package you initially receive.

Note: Do not modify any files except the configuration file.

2.1 API Interface

The following files in the directory must be included by any application using the system. They src/api

include all that is required to access the system. For details of the API functions, see Application

.Programming Interface

File Description

fsf.c API for the module.

api_fs_err.h Error code definitions.

2.2 Configuration File

The file contains all the configurable parameters of the system. Configure these src/config/config_safe.h

as required. For details of these options, see .Configuration Options

2.3 Version File

The file contains the version number of this module. This version number is src/version/ver_safe.h

checked by all modules that use this module to ensure system consistency over upgrades.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 11 www.hcc-embedded.com

2.4 SafeFLASH System

The following files are in the directory . src/safe-flash/common These files should only be modified by

.HCC

File Description

fsf.c SafeFLASH Standard API code.

fsf.h SafeFLASH Standard API header.

fsm.c SafeFLASH intermediate layer code.

fsm.h SafeFLASH intermediate layer header.

fsmf.c SafeFLASH Standard API multi-thread wrapper code.

fsmf.h SafeFLASH Standard API multi-thread wrapper header.

fstaticw.c Static wear leveling code.

fstaticw.h Static wear leveling header.

port_s.h Header file for port functions.

2.5 Test Files

The following files are in the directory . Use these files to exercise your file system.src/safe-flash/test

File Description

test_s.c Source of test program used to exercise the file system.

test_s.h Header file for test program.

testdrv_s.c Source of test program used to exercise a flash driver.

testdrv_s.h Header file for flash driver test program.

testport_ram_s.c Sample port file for running test applications.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 12 www.hcc-embedded.com

3 Configuration Options
Set the SafeFLASH configuration options in the file . This section lists the src/config/config_safe.h

available configuration options and their default values.

FS_MAXDENAME

This is the maximum size of a name in a base directory entry. SafeFLASH supports filenames of almost

unlimited length. A filename is built from a chain of small fragments taken from the descriptor block,

consisting of one FS_MAXDENAME entry that may have FS_MAXLFN size entries chained to it. The

maximum file name length is limited by the FS+MAXLNAME definition:

FS_MAXLFN – if a filename is longer than FS_MAXDENAME (the default is 13), an additional

FS_MAXLFN (the default is 11) byte block is allocated to store the longer name. These additional

blocks are added by the file system automatically.

FS_MAXLNAME – sets the maximum allowed name length. By default this is set to

FS_MAXDENAME+4*FS_MAXLFN (57 bytes). You may increase/decrease this by multiples of

FS_MAXLFN bytes; just change the FS_MAXLFN multiplier in the FS_MAXLNAME definition. This

sets the number of these structures that may be used for a single name.

Long filenames use memory from the descriptor blocks in the file system. The system uses an efficient

algorithm for allocating additional blocks in units of FS_MAXLFN. The use of long filenames reduces the

number of file and directory entries that can be stored.

FS_CAPI_USED

If you are using FAT in the same system as SafeFLASH, you can use the Common API (CAPI) to provide a

common API for accessing both systems. To do this, set FS_CAPI_USED to 1. If you are using SafeFLASH

on its own, do not change this setting from the default 0.

FS_SAFE_CASE_SENSITIVE

By default SafeFLASH uses case insensitive names. To enable case sensitive names, set this to 1.

FS_MAXVOLUME

The maximum number of volumes. The default is 2. Set this value to the maximum volume number used. If

only a RAM drive is used, set the value to 1; if you use a RAM drive and NOR flash, set it to 2, and so on.

Volume letters are assigned by passing a parameter in the function.f_mountdrive()

SafeFLASH supports multiple volumes. Each volume must have its own driver routine, which normally has

its own physical handler (except for the RAM drive).

FS_MAXTASK

The maximum number of tasks. The default is 1.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 13 www.hcc-embedded.com

FS_MAXPATHNAME

The maximum length of a path. The default is 256.

FS_CURRDRIVE

This sets the current drive at startup. The default is 0. A value of -1 means there's no default current drive.

HCC_16BIT_CHAR, TI_COMPRESS

Some TI DSP devices (for example, C2000 and C5000) require special handling by the file system because

of their unique architecture. For these devices, modify these two parameters as follows:

HCC_16BIT_CHAR – enable this if the target controller has a char type that is 16 bits wide.

TI_COMPRESS – this option allows more highly optimized storage of data in the file system. If this is

enabled and the file is opened with the special mode for this, only the lower half (8 bits) is stored for

all data written by the file system, and all data read out of the file system is stored in the lower 8 bits

of the chars in the buffer.

To use the TI_COMPRESS option, add a "c" to the open mode after the "r", "w" or "a". For example:

f_open("test", rc+);

f_open("test", wc);

If TI_COMPRESS is set and the "c" is not included in the open mode, the file data is handled normally.

Note: When using devices in which the pointer wraps at 64KB word boundaries, special effort is

needed to allocate memory for the system in a way that this can work. Please contact support@hcc-

 to discuss this further.embedded.com

CRCONFILES

To handle all files with a CRC, enable this (by default it is disabled). When it is enabled, each time a file is

stored the CRC is stored, and each time a file is opened its CRC is verified.

Note: Enabling this option has a major effect on system performance.

F_FILE_CHANGED_EVENT

Set this to 1 enable Change Event Notification when a file state changes. By default it is 0.

USE_TASK_SEPARATED_CWD

If this is set to 1, every task has its own current working directory. This is the default and is consistent with

older versions of the system.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 14 www.hcc-embedded.com

If it is set to 0, there is one current working directory per volume. If any task changes it, it is changed for all

tasks accessing that volume.

HCC_UNICODE

To enable the use of the , set this to 1. These functions are prefixed with "f_w", for Unicode 16 API functions

example instead of .f_wopen() f_open()

FS_SEPARATORCHAR

This defines the file separator character. By default this is a slash ("/"). Set this to '\\' to use backslash as the

pathname separator character.

FSF_MOST_FREE_ALLOC

Set this to 1, the default, to use Free Block Allocation. This allocates the block that has the most free

sectors.

The alternative algorithm for allocating file system blocks just finds a block with a single available sector.

FS_DISCARD_BUF_SIZE

The size of the FS_VOLUMEINFO.discard_buf that holds the indexes of discardable sectors. The default is

16.

Using a larger value may speed up small operations performed on large files on large volumes.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 15 www.hcc-embedded.com

4 System Features

4.1 Other Media Types

The SafeFLASH system design is based on the concept of a storage device with a logical block

arrangement. Because of this, any device that can emulate a logical block arrangement can be used as a

storage medium. However, note that:

SafeFLASH does not support removable media.

SafeFLASH is not recommended for arrays of flash greater than 4GB.

For removable media and very large arrays, we recommend using the HCC FAT or SafeFAT system.

4.2 Power Fail Safety

The SafeFLASH file system is entirely safe against power failure. The system may be stopped at any point,

then restarted, without data being lost; the previously completed state of the file system is restored.

When a file is closed, its data are automatically flushed from the file system. Until this closure takes place,

the file is preserved. You may also use the function to write the current state of the file to the f_flush()

medium, thus updating its fail-safe state.

4.3 Multiple Open Files in a Volume

SafeFLASH allows multiple files to be opened simultaneously on a volume, or on different volumes. Within

each driver (, , and) there is a MAXFILE definition that determines ramdrv_s.c flashdrv.c nflshdrv.c dfdrv.c

the number of files that can be opened simultaneously on that volume at any particular time.

For each opened file, an array must be allocated that contains a sector size buffer. Therefore, increasing

MAXFILE for a particular volume increases the RAM required by the system.

4.4 Wildcards

Wildcard characters can be used to find files or directories. Wildcard characters can be used only as

parameters for the function; these are then re-used when is called. The valid f_findfirst() f_findnext()

wildcard characters are:

Wildcard Description

* Matches any string.

? Matches any single character.

"*" Matches a string up to the end of file or the first ".", or from the first "." to the end

of file. This means that "*.*" is required to access all files or directories in the

target directory.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 16 www.hcc-embedded.com

1.

2.

Note: If you want to perform a logical operation such as :f_delete(".")

Call repeatedly.f_findfirst()/f_findnext()

When each name is returned in the F_FIND structure, use that as a parameter for .f_delete()

4.5 Static Wear Leveling

Flash devices are usually manufactured to a specification that includes a guaranteed number of write-erase

cycles that can be performed on each block before it may develop a fault. Because of this, it is important to

use the blocks in a device "evenly" to maximize the device lifetime.

SafeFLASH uses a process called to allocate the least-used blocks from those dynamic wear leveling

available. However, in systems where there are large areas of static data (for example, the executable

binary for the system), the areas may be written only once. This leaves a relatively small section of the

device to handle the much more heavily used files.

To counter this, a process called is used. When the function is called, static wear leveling fs_staticwear()

it searches for blocks that have been used much less than the most used blocks in the system. If the

difference between their usage rates is greater than a defined threshold (FS_STATIC_DISTANCE), the two

blocks are exchanged.

To use static wear leveling, you must include the files and in your project. The header fstaticw.c fstaticw.h

file should include the following two defines:

Define Description

FS_STATIC_DISTANCE This specifies the minimum difference between a heavily used block and a

lightly used block before a static swap is allowed. Do not set this number so

small that it causes unnecessary swapping. A reasonable figure is between

1% and 10% of the guaranteed erase/write cycles of the target chip.

FS_STATIC_PERIOD This specifies how often this function will actually attempt to perform a swap.

To reduce unnecessary checking of the system, you may use this to reduce

the number of times that is executed.fs_staticwear()

If you always know that the system will be idle when is called, fs_staticwear()

you may set this to 1 so that it is always executed; for example, if you make

just a few calls to at start-up. If is called at fs_staticwear() fs_staticwear()

every available opportunity, you may want to execute it less frequently.

While the static wear leveling function executes, the file system is not accessible. The length of time it takes

depends on the specification of the target chips being used, in particular the time required to erase a block

and the time required to copy one block to another.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 17 www.hcc-embedded.com

BlockCopy

For static wear leveling to function, an additional driver function must also be provided. See the BlockCopy

appropriate driver documents (for NOR flash or NAND flash) for information on implementing this function

for your target media. It is important to provide a highly optimized version of , preferably by BlockCopy

using special copy functions that are specific to the target chip, in order to achieve the best system

performance and least system disruption.

Do I need static wear-leveling?

In many cases it is an unnecessary overhead. To assess its importance, look at how your product is to be

used and consider the specifications of your target devices. Many devices have up to one million

guaranteed erase/write cycles per block and in many applications this number will not be reached in the

lifetime of the product.

When should I perform static wear-leveling?

Because wear leveling involves swapping blocks in the file system, all access is excluded for the duration of

the process. Thus, if your device has time-critical features, it is preferable to perform static wear leveling

during idle moments. For effective management of the system, call the function regularly during idle time.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 18 www.hcc-embedded.com

1.

2.

3.

4.

5.

5 Getting Started
To start your development as efficiently as possible, take the following steps:

Build the file system using the API (), the intermediate file system (), and the RAM fsf.c, fsmf.c fsm.c

driver (from the package), including the relevant header files. In this way ramdrv_s.c fs_safe_ram

you can build a file system that runs in RAM with little or no dependency on your hardware platform.

Build a test program to exercise this file system and check how it works in RAM. All build and

integration issues can thus be addressed before worrying about specific flash devices.

Now add the next volume to the system, depending on your requirements.

For a NOR drive: For a DataFlash drive: For a NAND drive:

Add from the flashdrv.c

 package to the fs_safe_nor

build.

Add from the dfdrv.c

 package to the fs_safe_df

build.

Add from the nflshdrv.c

 package to the fs_safe_nand

build.

Now add a physical device driver to the build.

For NOR chips: For DataFlash chips: For NAND chips:

Read the HCC SafeFLASH

File System NOR Drive User

 carefully.Guide

Using the available sample

drivers as a basis, create a

driver that meets your specific

needs.

Read the HCC SafeFLASH for

Adesto DataFlash Drives User

 carefully.Guide

Using the available sample

drivers as a basis, create a

driver that meets your specific

needs.

Read the HCC SafeFLASH

File System NAND Drive User

 carefully.Guide

Using the available sample

drivers as a basis, create a

driver that meets your specific

needs.

Add new volumes by repeating steps 3 and 4.

https://doc.hcc-embedded.com/display/SFFSNOR201/SafeFLASH+File+System+NOR+Drive+User+Guide
https://doc.hcc-embedded.com/display/SFFSNOR201/SafeFLASH+File+System+NOR+Drive+User+Guide
https://doc.hcc-embedded.com/display/SFFSNOR201/SafeFLASH+File+System+NOR+Drive+User+Guide
https://doc.hcc-embedded.com/display/SFSD/SafeFLASH+for+Adesto+DataFlash+Drives+User+Guide
https://doc.hcc-embedded.com/display/SFSD/SafeFLASH+for+Adesto+DataFlash+Drives+User+Guide
https://doc.hcc-embedded.com/display/SFSD/SafeFLASH+for+Adesto+DataFlash+Drives+User+Guide
https://doc.hcc-embedded.com/display/SAFENAND/SafeFLASH+File+System+NAND+Drive+User+Guide
https://doc.hcc-embedded.com/display/SAFENAND/SafeFLASH+File+System+NAND+Drive+User+Guide
https://doc.hcc-embedded.com/display/SAFENAND/SafeFLASH+File+System+NAND+Drive+User+Guide

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 19 www.hcc-embedded.com

6 Application Programming Interface
This section documents the Application Programming Interface (API). It includes all the functions that are

available to an application program.

6.1 Module Management

There is just one function.

Function Description

f_init() Initializes the file system.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 20 www.hcc-embedded.com

f_init

Use this function to initialize the file system. Call it once at start-up.

Data areas for the file system to use are allocated at compile time, based on the settings for each volume in

the configuration file .src/config/config_safe.h

Format

int f_init (void)

Arguments

Argument

None.

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example:

void main()

{

 f_init(); /* Initialize file system */

 .

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 21 www.hcc-embedded.com

6.2 File System API

This section describes all the Application Programmer Interface (API) functions available, apart from

. It is split into functions for general, volume, directory, and file management, also file Unicode functions

access.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 22 www.hcc-embedded.com

General Management

The functions are the following:

Function Description

f_enterFS() Creates resources for the calling task in the file system and

allocates a current working directory for that task.

f_releaseFS() Releases a previously assigned unique task ID.

f_getlasterror() Returns the last error code.

f_getversion() Retrieves file system version information.

fs_staticwear() Evens the wear of blocks that are rarely used.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 23 www.hcc-embedded.com

f_enterFS

Use this function to create resources for the calling task in the file system and allocate a current working

directory for that task.

Note:

If the target system allows multiple tasks to use the file system, this function must be called by a

task before it uses any other file API functions.

Correct operation of this function also requires that in the oal_get_task_id() OS Abstraction

has been ported to give a unique identifier for each task.Layer (OAL)

f_releaseFS() must be called to release the task from the file system and free the allocated resource. If the

system is a single task-based system, this function must also be called after is called.f_init()

Format

int f_enterFS (void)

Arguments

Argument

None.

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void main()

{

 f_init(); /* Initialize file system */

 f_enterFS(); /* Allow current (only) task to access file system */

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 24 www.hcc-embedded.com

f_releaseFS

Use this function to release a previously assigned unique task ID.

This function must be called if a given task is to be killed.

Format

void f_releaseFS (void)

Arguments

Argument

None.

Return values

Return value

None.

Example

void task_destructor()

{

 f_releaseFS(); /* Release current task ID */

 .

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 25 www.hcc-embedded.com

f_getlasterror

Use this function to return the last error code.

The last error code is cleared/changed when any API function is called.

Format

int f_getlasterror ()

Arguments

Argument

None.

Return values

Return value Description

Error code The last error code.

Example

int myopen()

{

 F_FILE *file;

 file = f_open("nofile.tst", "rb");

 if (!file)

 {

 int rc = f_getlasterror();

 printf ("f_open failed, errorcode:%d\n", rc);

 return rc;

 }

 return F_NO_ERROR;

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 26 www.hcc-embedded.com

f_getversion

Use this function to retrieve file system version information.

Format

char * f_getversion (void)

Arguments

Argument

None.

Return values

Return value Description

char * A pointer to a null-terminated ASCII string.

Example

void display_fs_version(void)

{

 printf("File system version: %s", f_getversion());

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 27 www.hcc-embedded.com

fs_staticwear

Use this function to even the wear of blocks that are rarely used.

See for information about when and how to use this function.Static Wear Leveling

Format

int fs_staticwear (int drvnum)

Arguments

Argument Description Type

drvnum The number of the drive (0='A', 1='B', and so on). int

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

 void idle(void)

{

 int ret;

 /* Try static wear on Drive A */

 ret = fs_staticwear(0);

 if (!ret)

 {

 printf("Static wear done\n");

 }

 Else

 {

 printf("Error in static wear!\n", ret);

 }

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 28 www.hcc-embedded.com

Volume Management

Note: The API functions , , , , f_chdrive() f_getdrive() f_get_drive_count() f_get_drive_list()

 and refer to drives by name because this is the convention, but the f_mountdrive() f_unmountdrive()

names are really references to volumes.

The functions are the following:

Function Description

f_mountdrive() Mounts and maps a new drive.

f_unmountdrive() Unmounts an existing volume.

f_chdrive() Changes to a new current drive.

f_getdrive() Gets the current drive number.

f_checkvolume() Checks the status of a drive that has been initialized.

f_format() Formats the specified drive.

f_get_drive_count() Gets the number of drives currently available to the user.

f_get_drive_list() Gets a list of drives currently available to the user.

f_getlabel() Returns the label as a function value.

f_setlabel() Sets a volume label.

f_get_oem() Returns the OEM name in the disk boot record.

f_getfreespace() Fills a structure with information about the drive space usage: total

space, free space, used space, and bad (damaged) size.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 29 www.hcc-embedded.com

f_mountdrive

Use this function to mount and map a new drive. Call it with the following parameters:

drivenum

The number of the drive to be mounted, where 0 is drive 'A', 1 is drive 'B', and so on. The maximum value of

 is set in FS_MAXVOLUME-1 in .drivenum fsm.h

buffer

A pointer for a buffer area to be used by the generic driver. Its size depends on the specific devices and

configuration used.

For a RAM drive allocate a buffer of the size required for the whole RAM file system, as shown in the

example below.

For a NOR drive call the generic NOR flash function with a pointer to the fs_getmem_flashdrive()

 function of the specific physical chip driver to be mounted (for example, get-physical()

). This function calculates and returns the amount of memory that must be fs_phy_nor_29lvxxx()

allocated for the physical driver. The caller must then allocate the memory and pass its pointer and

size to . See the example code below.f_mountdrive()

For a NAND drive call the generic NAND flash function with a pointer fs_getmem_nandflashdrive()

to the function of the specific physical chip driver to be mounted (for example, get-physical()

). This function calculates and returns the amount of memory that must fs_phy_nand_K9F2816X0C()

be allocated for the physical driver. The caller must then allocate this amount of memory and pass its

pointer and size to . See the example code below.f_mountdrive()

buffsize

The size of the allocated buffer that is passed to the mount function.

mountfunc

A pointer to the generic mount function for the specific media type. is a driver function that mountfunc()

describes which drive needs to be mounted. This calls the physical driver function to be associated with it.

Standard examples are:

fs_mount_ramdrive() – to use a drive as a RAM drive.

fs_mount_flashdrive() – to use a drive as a NOR flash drive.

fs_mount_nandflashdrive() – to use a drive as a NAND flash drive.

phyfunc

A pointer to a physical driver function for the desired device that is called by the generic mount function to

get information about how to use the device. For a RAM drive this function is NULL. Standard examples are:

fs_phy_nor_sim() – for PC emulation of NOR physical.

fs_phy_nor_29lvxxx() – for AMD flash.

fs_phy_nand_sim() – for PC emulation of NAND physical.

fs_phy_nand_ K9F2816X0C() – for Samsung NAND flash.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 30 www.hcc-embedded.com

Format

int f_mountdrive (

 int drivenum,

 void * buffer,

 long buffsize,

 FS_DRVMOUNT mountfunc,

 FS_PHYGETID phyfunc)

Arguments

Argument Description Type

drivenum The drive number (0='A', 1='B', and so on). int

buffer The buffer pointer to be used by the file system. void *

buffsize The size of the buffer. long

mountfunc The mount function for the selected drive type. FS_DRVMOUNT

phyfunc The physical driver for the specific chip type. FS_PHYGETID

Return values

Return value Description

FS_VOL_OK Drive successfully mounted.

FS_VOL_NOTMOUNT Drive not mounted.

FS_VOL_NOTFORMATTED Drive is mounted but is not formatted.

FS_VOL_NOMEMORY Not enough memory, drive is not mounted.

FS_VOL_NOMORE No more drives available (FS_MAXVOLUME).

FS_VOL_DRVERROR Mount driver error, not mounted.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 31 www.hcc-embedded.com

Example

/* This example shows how to mount Ramdrive, FLASH drive and NANDFLASH drive */

char p0buffer[0x100000]; /* 1M */

void main(void)

{

 char *p1buffer, *p2buffer;

 long memsize;

 f_init();

 f_enterFS();

 /* Drive A will be RAM drive */

 f_mountdrive(0, p0buffer, sizeof(p0buffer), fs_mount_ramdrive, 0);

 memsize = fs_getmem_flashdrive(fs_phy_nor_29lvxxx);

 if (!memsize)

 {

 /* Flash is not identified */

 }

 p1buffer = (char*)malloc(memsize);

 if (!p1buffer)

 {

 /* Not enough memory to allocate */

 }

 /* Drive B will be NOR flash drive with AMD physical driver */

 f_mountdrive(1, p1buffer, memsize, fs_mount_flashdrive, fs_phy_nor_29lvxxx);

 memsize = fs_getmem_nandflashdrive(fs_phy_nand_K9F2816X0C);

 if (!memsize)

 {

 /* NAND flash is not identified, */

 }

 p2buffer = (char*)malloc(memsize);

 if (!p2buffer)

 {

 /* Not enough memory to allocate */

 }

 /* Drive C will be NAND flash drive with Samsung physical driver */

 f_mountdrive(2, p2buffer, memsize, fs_mount_nandflashdrive, fs_phy_nand_K9F2816X0C);

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 32 www.hcc-embedded.com

f_unmountdrive

Use this function to unmount an existing volume.

Any open files on the media are marked as closed so that subsequent API accesses to a previously opened

file handle return with an error.

This function works independently of the status of the hardware.

Format

int f_unmountdrive (int drivenum)

Arguments

Argument Description Type

drivenum The drive number (0='A', 1='B', and so on). int

Return values

Return value Description

F_NO_ERROR Drive successfully deleted.

Else See .Error Codes

Example

void mydelfs(int num)

{

 int ret;

 /* Unmounts volume 1 */

 if (f_unmountdrive (num))

 printf("Unable to unmount volume %d", num);

 .

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 33 www.hcc-embedded.com

f_chdrive

Use this function to change to a new current drive.

In non-multitasking and multitasking systems, you must call if you need relative path access. In f_chdrive()

a multitasking system, and in a non-multitasking system after , every must be f_initvolume() f_enterFS()

followed by an function call. In a multitasking system every task has its own current drive.f_chdrive()

Format

int f_chdrive (int drivenum)

Arguments

Argument Description Type

drivenum The drive number to change to (0='A', 1='B', and so on). int

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example:

void myfunc(void)

{

 .

 .

 f_chdrive(0); /* Select drive A */

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 34 www.hcc-embedded.com

f_getdrive

Use this function to get the current drive number.

Format

int f_getdrive (void)

Arguments

Argument

None.

Return values

Return value Description

Current drive The drive number (0='A', 1='B', and so on).

Else See .Error Codes

Example

void myfunc(void)

{

 int currentdrive;

 .

 currentdrive = f_getdrive();

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 35 www.hcc-embedded.com

f_checkvolume

Use this function to check the status of a drive that has been initialized.

Format

int f_checkvolume (int drivenum)

Arguments

Argument Description Type

drivenum The drive number (0='A', 1='B', and so on). int

Return values

Return value Description

F_NO_ERROR The drive is working.

Else There is an error on the drive; for example, a card is missing. See

.Error Codes

Example

void mychkfs(int num)

{

 int ret;

 /* Checking volume */

 if (f_checkvolume(num))

 {

 printf("Volume %d is not usable! Error %d", num, ret);

 }

 else

 {

 printf("Volume %d is working, no error", num);

 }

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 36 www.hcc-embedded.com

f_format

Use this function to format the specified drive.

All data on the drive are destroyed, except the wear-leveling information on a FLASH device.

Format

int f_format (int drivenum)

Arguments

Arguments Description Type

drivenum The drive number (0='A', 1='B', and so on). int

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

char buffer[0x30000];

void myinitfs(void)

{

 int ret;

 f_init();

 f_enterFS();

 /* Drive A will be NOR flash drive */

 ret = f_mountdrive(0, buffer, sizeof(buffer), fs_mount_flashdrive, fs_phy_nor_29lvxxx);

 if (ret == FS_VOL_OK) return; /* Initialized */

 if (ret == FS_VOL_NOTFORMATTED)

 {

 ret = f_format(0); /* Format drive A */

 if (ret == F_ERR_NOTERR) return; /* Formatted */

 }

initializationfailed:

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 37 www.hcc-embedded.com

f_get_drive_count

Use this function to get the number of drives currently available to the user.

Format

int f_get_drive_count (void)

Arguments

Argument

None.

Return values

Return value Description

num The number of active volumes.

Example

void mygetvols(void)

{

 printf("There are %d active drives\n", f_get_drive_count());

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 38 www.hcc-embedded.com

f_get_drive_list

Use this function to get a list of drives currently available to the user.

Format

int f_get_drive_list (int * buffer)

Arguments

Argument Description Type

buffer Where to write the list. int *

Return values

Return value Description

number The number of active volumes.

Example

void mygetvols(void)

{

 int i, j;

 int buffer[F_MAXVOLUME];

 i = f_get_drive_list(buffer);

 if (!i) printf ("No active drive found\n");

 for (j=0; j<i; j++)

 {

 printf ("Drive %d is active\n", buffer[j]);

 }

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 39 www.hcc-embedded.com

f_getlabel

Use this function to return the label as a function value.

Format

int f_getlabel (

 int drivenum,

 char * pLabel,

 long len)

Arguments

Argument Description Type

drivenum The drive number (0='A', 1='B', and so on). int

pLabel Where to copy the label to. This should be big enough to

hold an 11 character string.

char *

len The length of the storage area. long

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void getlabel(void)

{

 char label[12];

 int result;

 result = f_getlabel(f_getdrive(), label, 12);

 if (result)

 printf("Error on Drive!");

 else

 printf("Drive is %s", label);

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 40 www.hcc-embedded.com

f_setlabel

Use this function to set a volume label.

The volume label should be an ASCII string with a maximum length of 11 characters. Non-printable

characters are padded out as space characters.

Format

int f_setlabel (

 int drivenum,

 const char * pLabel)

Arguments

Argument Description Type

drivenum The drive number (0='A', 1='B', and so on). int

pLabel A pointer to the null-terminated string to use. char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void setlabel(void)

{

 int result = f_setlabel(f_getdrive(), "DRIVE 1");

 if (result)

 printf("Error on drive!");

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 41 www.hcc-embedded.com

f_get_oem

Use this function to return the OEM name in the disk boot record.

Format

int f_get_oem (

 int drivenum,

 char * str,

 long len)

Arguments

Argument Description Type

drivenum The drive number (0='A', 1='B', and so on). int

str A pointer to the location to copy the label to.

This should be big enough to hold an eight character

string.

char *

len The length of the storage area. long

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void get_disk_oem(void)

{

 char oem_name[9];

 int result;

 oem_name[8] = 0; /* Zero-terminate the string */

 result = f_get_oem(f_getdrive(), oem_name, 8);

 if (result)

 printf("Error on drive!");

 else

 printf("Drive OEM is %s", oem_name);

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 42 www.hcc-embedded.com

f_getfreespace

Use this function to fill a structure with information about the drive space usage: total space, free space,

used space, and bad (damaged) size.

Note:

If a drive is greater than 4GB, also read the high elements of the returned structure (for

example, pspace.total_high) to get the upper 32 bits of each number.

The first call to this function after a drive is mounted may take some time, depending on the size

and format of the medium being used. After the initial call, changes to the volume are counted;

the function then returns immediately with the data.

Format

int f_getfreespace (

 int drivenum,

 F_SPACE * pspace)

Arguments

Argument Description Type

drivenum The drive number (0='A', 1='B', and so on). int

pspace A pointer to an F_SPACE structure. F_SPACE *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 43 www.hcc-embedded.com

Example

void info(void)

{

 F_SPACE space;

 int ret;

 /* Get free space on current drive */

 int ret = f_getfreespace(f_getdrive(), &space);

 if (!ret)

 {

 printf("There are:\

 %d bytes total,\

 %d bytes free,\

 %d bytes used,\

 %d bytes bad.",\

 space.total, space.free, space.used, space.bad);

 }

 else

 {

 printf("\nError %d reading drive\n", ret);

 }

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 44 www.hcc-embedded.com

Directory Management

The functions are the following:

Function Description

f_mkdir() Creates a new directory.

f_chdir() Changes the current working directory.

f_rmdir() Removes a directory.

f_getcwd() Gets the current working directory.

f_getdcwd() Gets the current working directory on the selected drive.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 45 www.hcc-embedded.com

f_mkdir

Use this function to create a new directory.

Format

int f_mkdir (const char * dirname)

Arguments

Argument Description Type

dirname The name of the new directory to create. char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 .

 .

 f_mkdir("subfolder"); /* Creating directories */

 f_mkdir("subfolder/sub1");

 f_mkdir("subfolder/sub2");

 f_mkdir("a:/subfolder/sub3");

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 46 www.hcc-embedded.com

f_chdir

Use this function to change the current working directory.

Every relative path starts from this directory. In a multitasking system every task has its own current working

directory.

Format

int f_chdir (const char * dirname)

Arguments

Argument Description Type

dirname A null-terminated string with the name of the directory to

change to.

char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 .

 .

 f_mkdir("subfolder");

 f_chdir("subfolder"); /* Change directory */

 f_mkdir("sub2");

 f_chdir(".."); /* Go up one directory level */

 f_chdir("subfolder/sub2"); /* Go into directory sub2 */

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 47 www.hcc-embedded.com

f_rmdir

Use this function to remove a directory.

The function returns an error code if:

The target directory is not empty.

The directory is read-only.

Format

int f_rmdir (const char * dirname)

Arguments

Argument Description Type

dirname The name of the directory to remove. char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 .

 .

 f_mkdir("subfolder"); /* Create directories */

 f_mkdir("subfolder/sub1");

 .

 . /* Do some work */

 .

 f_rmdir("subfolder/sub1"); /* Remove directories */

 f_rmdir("subfolder");

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 48 www.hcc-embedded.com

f_getcwd

Use this function to get the current working directory on the current drive.

Format

int f_getcwd (

 char * buffer,

 int maxlen)

Arguments

Argument Description Type

buffer Where to store the current working directory string. char *

maxlen The length of the buffer. int

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

#define BUFFLEN F_MAXPATH + F_MAXNAME

void myfunc(void)

{

 char buffer[BUFFLEN];

 if (!f_getcwd(buffer, BUFFLEN))

 {

 printf ("Current directory is %s", buffer);

 }

 else

 {

 printf ("Drive error!")

 }

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 49 www.hcc-embedded.com

f_getdcwd

Use this function to get the current working directory on the selected drive.

Format

int f_getdcwd (

 int drivenum,

 char * buffer,

 int maxlen)

Arguments

Argument Description Type

drivenum The drive number (0='A', 1='B', and so on). int

buffer Where to store the current working directory string. char *

maxlen The length of the buffer. int

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

#define BUFFLEN F_MAXPATH + F_MAXNAME

void myfunc(long drivenum)

{

 char buffer[BUFFLEN];

 if (!f_getdcwd(drivenum, buffer, BUFFLEN))

 {

 printf("Current directory is %s", buffer);

 printf("on drive %c", drivenum+’A’);

 }

 else

 {

 printf("Drive error!")

 }

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 50 www.hcc-embedded.com

File Access

The functions are the following:

Function Description

f_open() Opens a file.

f_close() Closes a file.

f_flush() Flushes an open file to disk.

f_read() Reads bytes from the current file position.

f_write() Writes data into a file at the current file position.

f_getc() Reads a character from the current position in the specified open

file.

f_putc() Writes a character to the specified open file at the current file

position.

f_eof() Checks whether the current position in the specified open file is the

end of file (EOF).

f_seteof() Moves the end of file (EOF) to the current file pointer.

f_tell() Obtains the current read-write position in the specified open file.

f_seek() Moves the stream position in the specified file.

f_rewind() Sets the file position in the specified open file to the start of the file.

f_truncate() Opens a file for writing and truncates it to the specified length.

f_ftruncate() Truncates a file that is open for writing to a specified length.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 51 www.hcc-embedded.com

f_open

Use this function to open a file. The following opening modes are allowed:

Mode Description

"r" Open existing file for reading. The stream is positioned at the beginning of the file.

"r+" Open existing file for reading and writing. The stream is positioned at the beginning of the file.

"w" Truncate file to zero length or create file for writing. The stream is positioned at the beginning of

the file.

"w+" Open a file for reading and writing. The file is created if it does not exist; otherwise it is truncated.

The stream is positioned at the beginning of the file.

"a" Open for appending (writing to end of file). The file is created if it does not exist. The stream is

positioned at the end of the file.

"a+" Open for reading and appending (writing to end of file). The file is created if it does not exist. The

stream is positioned at the end of the file.

Note the following:

The same file can be opened multiple times in “r” mode.

A file can only be opened once at a time in a mode which gives write access (that is, in “r+, “w”, “w+”

, “a” or “a+” mode).

The same file can be opened multiple times in “r” mode and at the same time once in one of the “r+,

“a” or “a+” modes which give write access.

If a file is opened in “w” or “w+” mode, a lock mechanism prevents it being opened in any other

mode. This prevents opening of the file for reading and writing at the same time.

Note: There is no text mode. The system assumes that all files are in binary mode only.

Format

F_FILE * f_open (

 const char * filename,

 const char * mode)

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 52 www.hcc-embedded.com

Arguments

Argument Description Type

filename The file to be opened. char *

mode The opening mode (see above). char *

Return values

Return value Description

F_FILE * A pointer to the handle of the opened file.

NULL If the pointer is null, the file could not be opened.

Example

void myfunc(void)

{

 F_FILE *file;

 char c;

 file = f_open("myfile.bin", "r");

 if (!file)

 {

 printf("File cannot be opened!");

 return;

 }

 f_read(&c, 1, 1, file); /* Read one byte */

 printf("’%c’ is read from file", c);

 f_close(file);

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 53 www.hcc-embedded.com

f_close

Use this function to close a previously opened file.

Format

int f_close (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The file handle. F_FILE *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 F_FILE *file;

 char *string = "ABC";

 file = f_open("myfile.bin", "w");

 if (!file)

 {

 printf("File cannot be opened!");

 return;

 }

 f_write(string, 3, 1, file); /* Write 3 bytes */

 if (!f_close(file))

 {

 printf("File stored");

 }

 else

 {

 printf("File close error!");

 }

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 54 www.hcc-embedded.com

f_flush

Use this function to flush an opened file to a storage medium.

This is logically equivalent to performing a close and open on a file to ensure the data changed before the

flush is committed to the medium.

Format

int f_flush (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The file handle. F_FILE *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myflush(void)

{

 F_FILE *file;

 char *string = "ABC";

 file = f_open("myfile.bin", "w");

 if (!file)

 {

 printf ("File cannot be opened!");

 return;

 }

 f_write(string, 3, 1, file); /* Write 3 bytes */

 f_flush(file); /* Commit data written */

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 55 www.hcc-embedded.com

f_read

Use this function to read bytes from the current position in the target file.

The file must be opened with “r”, "r+", "w+" or "a+".

Format

long f_read (

 void * buf,

 long size,

 long size_st,

 F_FILE * filehandle)

Arguments

Argument Description Type

buf The buffer to store the data in. void *

size The size of the items to read. long

size_st The number of items to read. long

filehandle The file handle. F_FILE *

Return values

Return value Description

The number of items successfully

read.

If this does not equal the number of items requested, call f_getlast

 to determine the cause.error()

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 56 www.hcc-embedded.com

Example

void myread(void)

{

 F_FILE *file = f_open(filename, "r");

 long size = f_filelength(filename);

 if (!file)

 {

 printf ("%s cannot be opened!", filename);

 return 1;

 }

 if (f_read(buffer, 1, size, file)!= size)

 {

 printf("Some items not read! Error:%d", f_getlasterror());

 }

 f_close(file);

 return 0;

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 57 www.hcc-embedded.com

f_write

Use this function to write data into a file at the current position.

The file must be opened with "r+", “w”, “w+”, "a+" or “a”. The file pointer is moved forward by the number of

bytes successfully written.

Note: Data is NOT permanently stored to the media until either an or has been f_flush() f_close ()

executed on the file.

Format

long f_write (

 const void * buf,

 long size,

 long size_st,

 F_FILE * filehandle)

Arguments

Argument Description Type

buf A pointer to the data to write. void *

size The size of the items to write. long

size_st The number of items to write. long

filehandle The file handle. F_FILE *

Return values

Return value Description

The number of items successfully

written.

If this does not equal the number of items requested, call f_getlast

 to determine the cause.error()

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 58 www.hcc-embedded.com

Example

void myfunc(void)

{

 F_FILE *file;

 char *string = "ABC";

 file = f_open("myfile.bin", "w");

 if (!file)

 {

 printf("File cannot be opened!");

 return;

 }

 if (f_write(string, 1, 3, file)!= 3) /* Write 3 bytes */

 {

 printf("Some items not written! Error:%d", f_getlasterror());

 }

 f_close(file);

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 59 www.hcc-embedded.com

f_getc

Use this function to read a character from the current position in the open target file.

Format

int f_getc (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The file handle. F_FILE *

Return values

Return value Description

-1 Read failed.

value The character read from the file.

Example

int myreadfunc(char *filename, char *buffer, long buffsize)

{

 F_FILE *file = f_open(filename, "r");

 while (buffsize--)

 {

 int ch;

 if ((ch = f_getc(file)) == -1)

 break;

 *buffer++ = ch;

 buffsize--;

 }

 f_close(file);

 return 0;

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 60 www.hcc-embedded.com

f_putc

Use this function to write a character to the specified open file at the current file position. The current file

position is incremented.

Format

int f_putc (

 char ch,

 F_FILE * filehandle)

Arguments

Argument Description Type

ch The character to write. char

filehandle The file handle. F_FILE *

Return values

Return value Description

-1 Write failed.

value The successfully written character.

Example

void myfunc(char *filename, long num)

{

 F_FILE *file = f_open(filename, "w");

 while (num--)

 {

 int ch = 'A';

 if (ch != (f_putc(ch))

 {

 printf("f_putc error!");

 break;

 }

 }

 f_close(file);

 return 0;

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 61 www.hcc-embedded.com

f_eof

Use this function to check whether the current position in the open target file is the end of file (EOF).

Format

int f_eof (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The file handle. F_FILE *

Return values

Return value Description

F_NO_ERROR Not at the end of the file.

Else At the end of file, or an error occurred; see .Error Codes

Example

int myreadfunc(char *filename, char *buffer, long buffsize)

{

 F_FILE *file = f_open(filename, "r");

 while (!f_eof())

 {

 if (!buffsize) break;

 buffsize--;

 f_read(buffer++, 1, 1, file);

 }

 f_close(file);

 return 0;

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 62 www.hcc-embedded.com

f_seteof

Use this function to move the end of file (EOF) to the current file pointer.

All data after the new EOF position are lost.

Format

int f_seteof (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The file handle. F_FILE *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

int mytruncatefunc(char *filename, int position)

{

 F_FILE *file = f_open(filename, "r+");

 f_seek(file, position, SEEK_SET);

 if (f_seteof(file))

 printf("Truncate failed!\n");

 f_close(file);

 return 0;

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 63 www.hcc-embedded.com

f_tell

Use this function to obtain the current read/write position in the open target file.

Format

long f_tell (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The file handle. F_FILE *

Return values

Return value Description

filepos The current read or write file position.

Example

int myreadfunc(char *filename, char *buffer, long buffsize)

{

 F_FILE *file = f_open(filename, "r");

 printf("Current position %d", f_tell(file)); /* Position 0 */

 f_read(buffer, 1, 1, file); /* Read one byte */

 printf("Current position %d", f_tell(file)); /* Position 1 */

 f_read(buffer, 1, 1, file); /* Read one byte */

 printf("Current position %d", f_tell(file)); /* Position 2 */

 f_close(file);

 return 0;

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 64 www.hcc-embedded.com

f_seek

Use this function to move the stream position in the target file. The file must be open.

The parameter is one of the following:whence

F_SEEK_CUR – current position of file pointer.

F_SEEK_END – end of file.

F_SEEK_SET – start of file.

The offset position is relative to whence.

Format

long f_seek (

 F_FILE * filehandle,

 long offset,

 long whence)

Arguments

Argument Description Type

filehandle The file handle. F_FILE *

offset The byte position relative to whence. long

whence Where to calculate the from.offset long

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 65 www.hcc-embedded.com

Example

int myreadfunc(char *filename, char *buffer, long buffsize)

{

 F_FILE *file = f_open(filename, "r");

 f_read(buffer, 1, 1, file); /* Read the first byte */

 f_seek(file, 0, SEEK_SET);

 f_read(buffer, 1, 1, file); /* Read the same byte */

 f_seek(file, -1, SEEK_END);

 f_read(buffer, 1, 1, file); /* Read the last byte */

 f_close(file);

 return 0;

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 66 www.hcc-embedded.com

f_rewind

Use this function to set the file position in the open target file to the start of the file.

Format

int f_rewind (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The file handle. F_FILE *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 char buffer[4];

 char buffer2[4];

 F_FILE *file = f_open("myfile.bin", "r");

 if (file)

 {

 f_read(buffer, 4, 1, file);

 f_rewind(file); /* Rewind file pointer */

 f_read(buffer2, 4, 1, file); /* Read from beginning */

 f_close(file);

 }

 return 0;

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 67 www.hcc-embedded.com

f_truncate

Use this function to open a file for writing and truncate it to the specified length.

A file can only be truncated to a size less than or equal to its current size.

Format

F_FILE * f_truncate (

 const char * filename,

 unsigned long length)

Arguments

Argument Description Type

filename The file to open. char *

length The new length of the file. unsigned long

Return values

Return value Description

F_FILE * A pointer to the handle of the opened file.

NULL If the pointer is null, the file could not be opened.

Example

int mytruncatefunc(char *filename, unsigned long length)

{

 F_FILE *file = f_truncate(filename, length);

 if (!file)

 {

 printf("File opening error!");

 }

 else

 {

 printf("File %s truncated to %d bytes", filename, length);

 f_close(file);

 }

 return 0;

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 68 www.hcc-embedded.com

f_ftruncate

Use this function to truncate a file which is open for writing to a specified length.

A file can only be truncated to a size less than or equal to its current size.

Format

int f_ftruncate (

 F_FILE * filehandle,

 unsigned long length)

Arguments

Argument Description Type

filehandle The file handle of the open file. F_FILE *

length The new length of the file. unsigned long

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

int mytruncatefunc(F_FILE *file, unsigned long length)

{

 int ret = f_ftruncate(filename, length);

 if (ret)

 {

 printf("Error:%d\n", ret);

 }

 else

 {

 printf("File is truncated to %d bytes", length);

 }

 return ret;

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 69 www.hcc-embedded.com

File Management

The functions are the following:

Function Description

f_delete() Deletes a file.

f_findfirst() Finds the first file or subdirectory in a specified directory.

f_findnext() Finds the next file or subdirectory in a specified directory after a

previous call to or .f_findfirst() f_findnext()

f_move() Moves a file or directory.The original file or directory is lost.

f_rename() Renames a file or directory.

f_getpermission() Retrieves the file or directory permission field associated with a

file.

f_setpermission() Sets the file or directory permission field associated with a file.

f_gettimedate() Gets time and date information from a file or directory.

f_settimedate() Sets time and date information for a file or directory.

f_fstat() Gets information about a file by using the file handle.

f_stat() Gets information about a file.

f_filelength() Gets the length of a file.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 70 www.hcc-embedded.com

f_delete

Use this function to delete a file.

Note: A read-only or open file cannot be deleted.

Format

int f_delete (const char * filename)

Arguments

Argument Description Type

filename A null-terminated string with the name of the file, with or

without its path.

char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 .

 .

 f_delete("oldfile.txt");

 f_delete("A:/subdir/oldfile.txt");

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 71 www.hcc-embedded.com

f_findfirst

Use this function to find the first file or subdirectory in a specified directory.

First call and then, if the file is found, get the next file with . Files with the system f_findfirst() f_findnext()

attribute set are ignored.

Note: If this is called with "*.*" and it is not the root directory, then:

the first entry found is ".", the current directory.

the second entry found is “..”, the parent directory.

Format

int f_findfirst (

 const char * filename,

 F_FIND * find)

Arguments

Argument Description Type

filename The name of the file to find. char *

find Where to store the file information. F_FIND *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 72 www.hcc-embedded.com

Example

void mydir(void)

{

 F_FIND find;

 if (!f_findfirst("A:/subdir/*.*", &find))

 {

 do

 {

 printf("filename:%s", find.filename);

 if (find.attr&F_ATTR_DIR)

 {

 printf(" directory\n");

 }

 else

 {

 printf(" size %d\n", find.filesize);

 }

 } while (!f_findnext(&find));

 }

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 73 www.hcc-embedded.com

f_findnext

Use this function to find the next file or subdirectory in a specified directory after a previous call to

 or .f_findfirst() f_findnext()

First call and then, if a file is found, get the rest of the matching files by repeated calls to f_findfirst()

. Files with the system attribute set will be ignored.f_findnext()

Note: If this is called with "*.*" and it is not the root directory, then:

the first file found is ".", the current directory.

the second file found is “..”, the parent directory.

Format

int f_findnext (F_FIND * find)

Arguments

Argument Description Type

find File information (created by calling).f_findfirst() F_FIND *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 74 www.hcc-embedded.com

Example

void mydir(void)

{

 F_FIND find;

 if (!f_findfirst("A:/subdir/*.*", &find))

 {

 do

 {

 printf("filename:%s", find.filename);

 if (find.attr&F_ATTR_DIR)

 {

 printf(" directory\n");

 }

 else

 {

 printf(" size %d\n", find.filesize);

 }

 } while (!f_findnext(&find));

 }

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 75 www.hcc-embedded.com

f_move

Use this function to move a file or directory.The original file or directory is lost.

The source and target must be in the same volume. A file can be moved only if it is not open. A directory

can be moved only if there are no open files in it.

A file or directory can be moved, irrespective of its attribute settings; the attribute settings are moved with it.

Format

int f_move (

 const char * filename,

 const char * newname)

Arguments

Argument Description Type

filename The file or directory name, with or without its path. char *

newname The new name of the file or directory, with or without its

path.

char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 .

 .

 f_move("oldfile.txt", "newfile.txt");

 f_move("A:/subdir/oldfile.txt", "A:/newdir/oldfile.txt");

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 76 www.hcc-embedded.com

f_rename

Use this function to rename a file or directory.

If a file or directory is read-only it cannot be renamed. If a file is open it cannot be renamed.

Format

int f_rename (

 const char * filename,

 const char * newname)

Arguments

Argument Description Type

filename The file or directory name, with or without its path. char *

newname The new name of the file or directory. char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 .

 .

 f_rename("oldfile.txt", "newfile.txt");

 f_rename("A:/subdir/oldfile.txt", "newfile.txt");

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 77 www.hcc-embedded.com

f_getpermission

Use this function to retrieve the file or directory permission field associated with a file.

Every file and directory in the file system has an associated 32 bit field, known as the permission setting.

Except for the top six bits, you can program this field as required. You could, for example, use it to create a

user access system. The first six bits are reserved for use by the system, as follows:

#define FSSEC_ATTR_ARC (0x20UL << (31-6))

#define FSSEC_ATTR_DIR (0x10UL << (31-6))

#define FSSEC_ATTR_VOLUME (0x08UL << (31-6))

#define FSSEC_ATTR_SYSTEM (0x04UL << (31-6))

#define FSSEC_ATTR_HIDDEN (0x02UL << (31-6))

#define FSSEC_ATTR_READONLY (0x01UL << (31-6))

Format

int f_getpermission (

 const char * filename,

 unsigned long * psecure)

Arguments

Argument Description Type

filename The name of the file. char *

psecure Where to store the permission field. unsigned long *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 78 www.hcc-embedded.com

Example

void myfunc(void)

{

 unsigned long secure;

 if (!f_getpermission("subfolder", &secure))

 {

 printf("Permission is: %d", secure);

 }

 else

 {

 printf("Permission cannot be retrieved!");

 }

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 79 www.hcc-embedded.com

f_setpermission

Use this function to set the file or directory permission field associated with a file.

Every file/directory in the file system has an associated 32 bit field, known as the permission setting. Except

for the top six bits, this field is freely programmable by the user and could, for instance, be used to create a

user access system. The first six bits are reserved for use by the system, as follows:

#define FSSEC_ATTR_ARC (0x20UL << (31-6))

#define FSSEC_ATTR_DIR (0x10UL << (31-6))

#define FSSEC_ATTR_VOLUME (0x08UL << (31-6))

#define FSSEC_ATTR_SYSTEM (0x04UL << (31-6))

#define FSSEC_ATTR_HIDDEN (0x02UL << (31-6))

#define FSSEC_ATTR_READONLY (0x01UL << (31-6))

Format

int f_setpermission (

 const char * filename,

 unsigned long secure)

Arguments

Argument Description Type

filename The name of the file. char *

secure A 32 bit number to associate with the filename. unsigned long

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 f_mkdir("subfolder"); /* Create directory */

 f_setpermission("subfolder", 0x00FF0000);

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 80 www.hcc-embedded.com

f_gettimedate

Use this function to get time and date information from a file or directory.

This field is automatically set by the system when a file or directory is created, and when a file is closed.

Date and Time Formats

The date and time fields are two 16 bit fields associated with each file/directory. If FAT compatibility is

required, these must use the standard type definitions for time and date given below. If FAT compatibility is

not required, you can use these fields as you require. See for information on porting.PSP Porting

The required format for the date for PC compatibility is a short integer ‘d’ (16 bit), such that:

Argument Valid values Format

Day 0-31 (d & 0x001F)

Month 1-12 ((d & 0x01E0) >> 5)

Years since 1980 0-119 ((d & 0xFE00) >> 9)

The required format for the time for PC compatibility is a short integer ‘t’ (16 bit), such that:

Argument Valid values Format

Two second increments 0-30 (t & 0x001F)

Minute 0-59 ((t & 0x07E0) >> 5)

Hour 0-23 ((t & 0xF800) >> 11)

Format

int f_gettimedate (

 const char * filename,

 unsigned short * pctime,

 unsigned short * pcdate)

Arguments

Argument Description Type

filename The target file. char *

pctime Where to store the creation time. unsigned short *

pcdate Where to store the creation date. unsigned short *

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 81 www.hcc-embedded.com

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 unsigned short t, d, sec, min, hour;

 unsigned short day, month, year;

 if (!f_gettimedate("subfolder", &t, &d))

 {

 sec = (t & F_CTIME_SEC_MASK);

 min = ((t & F_CTIME_MIN_MASK) >> F_CTIME_MIN_SHIFT);

 hour = ((t & F_CTIME_HOUR_MASK) >> F_CTIME_HOUR_SHIFT);

 day = (d & F_CDATE_DAY_MASK);

 month = ((d & F_CDATE_MONTH_MASK) >> F_CDATE_MONTH_SHIFT);

 year = 1980 + ((d & F_CDATE_YEAR_MASK) >> F_CDATE_YEAR_SHIFT);

 printf("Time: %d:%d:%d", hour, min, sec);

 printf("Date: %d.%d.%d", year, month, day);

 }

 else

 {

 printf("File time cannot be retrieved!");

 }

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 82 www.hcc-embedded.com

f_settimedate

Use this function to set the time and date on a file or on a directory.

Date and Time Formats

The date and time fields are two 16 bit fields associated with each file/directory. If FAT compatibility is

required, these must use the standard type definitions for time and date given below. If FAT compatibility is

not required, you can use these fields as you require. See for information on porting.PSP Porting

The required format for the date for PC compatibility is a short integer ‘d’ (16 bit), such that:

Argument Valid values Format

Day 0-31 (d & 0x001F)

Month 1-12 ((d & 0x01E0) >> 5)

Years since 1980 0-119 ((d & 0xFE00) >> 9)

The required format for the time for PC compatibility is a short integer ‘t’ (16 bit), such that:

Argument Valid values Format

Two second increments 0-30 (t & 0x001F)

Minute 0-59 ((t & 0x07E0) >> 5)

Hour 0-23 ((t & 0xF800) >> 11)

Format

int f_settimedate (

 const char * filename,

 unsigned short ctime,

 unsigned short cdate)

Arguments

Argument Description Type

filename The file or directory. char *

ctime The creation time of the file or directory. unsigned short

cdate The creation date of the file or directory. unsigned short

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 83 www.hcc-embedded.com

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 unsigned short ctime, cdate;

 ctime = (15 << 11) + (30 << 5) + (22 >> 1); /* 15:30:22 */

 cdate = ((2002 - 1980) << 9) + (11 << 5) + (3); /* 2002.11.03. */

 f_mkdir("subfolder"); /* Create directory */

 f_settimedate("subfolder", ctime, cdate);

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 84 www.hcc-embedded.com

f_fstat

Use this function to get information about a file by using the file handle.

This function retrieves information by filling the structure passed to it. It sets the file size, creation F_STAT

time/date, last access date, modified time/date, and the drive number where the file is located.

Format

int f_fstat (

 F_FILE * p_filehandle,

 F_STAT * p_stat)

Arguments

Argument Description Type

p_filehandle The file handle. F_FILE *

p_stat A pointer to the F_STAT structure to be filled. F_STAT *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 85 www.hcc-embedded.com

Example

void myfunc (void)

{

 F_FILE *file;

 F_STAT stat;

 int ret;

 file = f_open(filename, "r");

 if (file != NULL)

 {

 ret = f_fstat(file, &stat);

 if (ret == F_NO_ERROR)

 {

 printf("filesize:%d\r\n", stat.filesize);

 }

 else

 {

 printf("f_fstat error: %d.\r\n", ret);

 }

 f_close(file);

 }

 else

 {

 printf("%s cannot be opened!\r\n", filename);

 }

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 86 www.hcc-embedded.com

f_stat

Use this function to get information about a file.

This function retrieves information by filling the structure passed to it. It sets file size, creation timeF_STAT

/date, last access date, modified time/date, and the drive number where the file is located.

Note: This function can also return with the opened file’s current size when is f_findopensize()

allowed to search through all open file descriptors for its modified size. If this feature is disabled then

 always returns 0.f_findopensize()

Format

int f_stat (

 const char * filename,

 F_STAT * stat)

Arguments

Argument Description Type

filename The name of the file. char *

stat A pointer to the F_STAT structure to be filled. F_STAT *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 F_STAT stat;

 if (f_stat("myfile.txt", &stat))

 {

 printf("Error!");

 return;

 }

 printf("filesize:%d", stat.filesize);

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 87 www.hcc-embedded.com

f_filelength

Use this function to get the length of a file.

Note: This function can also return with the opened file’s size when is allowed to f_findopensize()

search for it. If always returns 0, this feature is disabled.f_findopensize()

Format

long f_filelength (const char * filename)

Arguments

Argument Description Type

filename The file name, with or without the path. char *

Return values

Return value Description

filelength The length of the file.

-1 The requested file does not exist or has an error; check the last

error.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 88 www.hcc-embedded.com

Example

int myreadfunc(char *filename, char *buffer, long buffsize)

{

 F_FILE *file = f_open(filename, "r");

 long size = f_filelength(filename);

 if (!file)

 {

 printf("%s cannot be opened!", filename);

 return 1;

 }

 if (size > buffsize)

 {

 printf("Not enough memory!");

 return 2;

 }

 f_read(buffer, size, 1, file);

 f_close(file);

 return 0;

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 89 www.hcc-embedded.com

6.3 File System Unicode API

This section describes all the API Unicode functions available with the SafeFLASH file system. It is split into

functions for directory management, file access and file management.

Unicode-Specific File System Functions

To enable Unicode API calls in the SafeFLASH file system, enable in the HCC_UNICODE src/config

file. This makes the functions in this section, as well as their standard API equivalents, /config_safe.h

available for use.

All functions are exactly the same as their standard API counterparts, except that all character string

parameters are changed to “wide character” (wchar) strings.

Character and wide character definition with W_CHAR

W_CHAR is defined as if Unicode is disabled and as if it is enabled. Therefore W_CHAR is char wchar

used in structures where the element could be used in either type of system.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 90 www.hcc-embedded.com

Unicode Directory Management

The functions are the following:

Function Description

f_wmkdir() Creates a new directory with a Unicode 16 name.

f_wchdir() Changes the current working directory (that has a Unicode 16

name).

f_wrmdir() Removes a directory with a Unicode 16 name.

f_wgetcwd() Gets the current working directory.

f_wgetdcwd() Gets the current working directory on the selected drive.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 91 www.hcc-embedded.com

f_wmkdir

Use this function to create a new directory with a Unicode 16 name.

Format

int f_wmkdir (const W_CHAR * dirname)

Arguments

Argument Description Type

dirname The Unicode 16 name of the directory to create. W_CHAR *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

 void myfunc(void)

{

 .

 .

 f_wmkdir("subfolder"); /* Create directories */

 f_wmkdir("subfolder/sub1");

 f_wmkdir("subfolder/sub2");

 f_wmkdir("a:/subfolder/sub3");

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 92 www.hcc-embedded.com

f_wchdir

Use this function to change the current working directory (that has a Unicode 16 name).

Format

int f_wchdir (const W_CHAR * dirname)

Arguments

Argument Description Type

dirname The Unicode 16 name of the directory to change to. W_CHAR *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

 void myfunc(void)

{

 .

 .

 f_wmkdir("subfolder");

 f_wchdir("subfolder"); /* Change directory */

 f_wmkdir("sub2");

 f_wchdir(".."); /* Go upward */

 f_wchdir("subfolder/sub2"); /* Go into directory sub2 */

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 93 www.hcc-embedded.com

f_wrmdir

Use this function to remove a directory with a Unicode 16 name.

The directory must be empty, otherwise an error code is returned and it is not removed.

Format

int f_wrmdir (const W_CHAR * dirname)

Arguments

Argument Description Type

dirname The Unicode 16 name of the directory to remove. W_CHAR *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

 void myfunc(void)

{

 .

 .

 f_wmkdir("subfolder"); /* Create directory */

 f_wmkdir("subfolder/sub1"); /* Create directory */

 .

 . /* Do some work */

 .

 f_wrmdir("subfolder/sub1"); /* Remove directory */

 f_wrmdir("subfolder"); /* Remove directory */

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 94 www.hcc-embedded.com

f_wgetcwd

Use this function to get the current working directory on the current drive.

Format

int f_wgetcwd (

 W_CHAR * buffer,

 int maxlen)

Arguments

Argument Description Type

buffer Where to store the current working directory string. W_CHAR *

maxlen The length of the buffer. int

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

 void myfunc(int drivenum)

{

 W_CHAR buffer[F_MAXPATH];

 if (!f_wgetdcwd(drivenum, buffer, F_MAXPATH))

 {

 wprintf("Current directory is %s", buffer);

 wprintf("on drive %c", drivenum + ’A’);

 }

 else

 {

 wprintf("Drive error!");

 }

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 95 www.hcc-embedded.com

f_wgetdcwd

Use this function to get the current working directory on the selected drive.

Format

int f_wgetdcwd (

 int drivenum,

 W_CHAR * buffer,

 int maxlen)

Arguments

Argument Description Type

drivenum The drive number (0='A', 1='B', and so on). int

buffer Where to store the current working directory string. W_CHAR *

maxlen The length of the buffer. int

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

 void myfunc(int drivenum)

{

 W_CHAR buffer[F_MAXPATH];

 if (!f_wgetdcwd(drivenum, buffer, F_MAXPATH))

 {

 wprintf("Current directory is %s", buffer);

 wprintf("on drive %c", drivenum + ’A’);

 }

 else

 {

 wprintf("Drive error!");

 }

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 96 www.hcc-embedded.com

Unicode File Access

The functions are the following:

Function Description

f_wopen() Opens a file that has a Unicode 16 filename.

f_wtruncate() Opens a Unicode 16 file for writing and truncates it to the specified

length.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 97 www.hcc-embedded.com

f_wopen

Use this function to open a file that has a Unicode 16 filename. The following opening modes are allowed:

Modes Description

"r" Open an existing file for reading. The stream is positioned to the beginning of the file.

"r+" Open an existing file for reading and writing. The stream is positioned to the beginning of the

file.

"w" Truncate file to zero length or create file for writing. The stream is positioned to the beginning of

the file.

"w+" Open for reading and writing. The file is created if it does not exist; otherwise it is truncated. The

stream is positioned to the beginning of the file.

"a" Open for appending (writing at end of file). The file is created if it does not exist. The stream is

positioned to the end of the file.

"a+" Open for reading and appending (writing at end of file). The file is created if it does not exist.

The stream is positioned to the end of the file.

Note the following:

The same file can be opened multiple times in “r” mode.

A file can only be opened once at a time in a mode which gives write access (that is, in “r+, “w”, “w+”

, “a” or “a+” mode).

The same file can be opened multiple times in “r” mode and at the same time once in one of the “r+,

“a” or “a+” modes which give write access.

If a file is opened in “w” or “w+” mode, a lock mechanism prevents it being opened in any other

mode. This prevents opening of the file for reading and writing at the same time.

Note: There is no text mode. The system assumes all files to be accessed in binary mode only.

Format

F_FILE * f_wopen (

 const W_CHAR * filename,

 const char * mode)

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 98 www.hcc-embedded.com

Arguments

Argument Description Type

filename The Unicode 16 name of the file. W_CHAR *

mode The opening mode (see above). char *

Return values

Return value Description

F_FILE * A pointer to the handle of the opened file.

NULL If the pointer is null, the file could not be opened.

Example

void myfunc(void)

{

 F_FILE *file;

 char c;

 file = f_wopen("myfile.bin", "r");

 if (!file)

 {

 wprintf("File cannot be opened!");

 return;

 }

 f_read(&c, 1, 1, file); /* Read one byte */

 wprintf("’%c’ is read from file", c);

 f_close(file);

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 99 www.hcc-embedded.com

f_wtruncate

Use this function to open an existing file for writing and truncate it to the specified length.

If the length is greater than the length of the existing file, the file is padded with zeroes to the truncated

length.

Format

F_FILE * f_wtruncate (

 const W_CHAR * filename,

 unsigned long length)

Arguments

Argument Description Type

filename The file to open. W_CHAR *

length The new length of the file. unsigned long

Return values

Return value Description

F_FILE * A pointer to the handle of the opened file.

NULL If the pointer is null, the file could not be opened.

Example

int mywtruncatefunc(W_CHAR *filename, unsigned long length)

{

 F_FILE *file = f_wtruncate(filename, length);

 if (!file)

 wprintf("File not found!");

 else

 {

 wprintf("File %s truncated to %d bytes", filename, length);

 f_close(file);

 }

 return 0;

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 100 www.hcc-embedded.com

Unicode File Management

The functions are the following:

Function Description

f_wdelete() Deletes a file that has a Unicode 16 name.

f_wfindfirst() Finds the first Unicode 16 file or subdirectory in a specified

directory.

f_wfindnext() Finds the next file or subdirectory in a specified directory after a

previous call to or .f_wfindfirst() f_wfindnext()

f_wmove() Moves a file or directory that has a Unicode 16 name. The original

file or directory is lost.

f_wrename() Renames a file or directory that has a Unicode 16 name.

f_wgetpermission() Retrieves the file or directory permission field associated with a

Unicode 16 file.

f_wsetpermission() Sets the file or directory permission field associated with a Unicode

16 file.

f_wgettimedate() Gets time and date information from a Unicode 16 file or directory.

f_wsettimedate() Sets time and date information for a Unicode 16 file or directory.

f_wfilelength() Gets the length of a file that has a Unicode 16 name.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 101 www.hcc-embedded.com

f_wdelete

Use this function to delete a file with a Unicode 16 name.

Format

 int f_wdelete (const W_CHAR * filename)

Arguments

Argument Description Type

filename The Unicode 16 name of the file to delete, with or without

its path.

W_CHAR *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

 void myfunc(void)

{

 .

 .

 f_wdelete("oldfile.txt");

 f_wdelete("A:/subdir/oldfile.txt");

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 102 www.hcc-embedded.com

f_wfindfirst

Use this function to find the first Unicode 16 file or subdirectory in the specified directory.

First call then, if a file is found, get the next file with .f_wfindfirst() f_wfindnext()

Format

int f_wfindfirst (

 const W_CHAR * filename,

 F_WFIND * find)

Arguments

Argument Description Type

filename The Unicode 16 name of the file or subdirectory to find. W_CHAR *

find Where to store the file information. F_WFIND *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 103 www.hcc-embedded.com

Example

 void mydir(void)

{

 F_WFIND find;

 if (!f_wfindfirst("A:/subdir/*.*", &find))

 {

 do

 {

 wprintf("filename:%s", find.filename);

 if (find.attr&F_ATTR_DIR)

 {

 wprintf(" directory\n");

 }

 else

 {

 wprintf(" size %d\n", find.len);

 }

 } while (!f_wfindnext(&find));

 }

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 104 www.hcc-embedded.com

f_wfindnext

Use this function to find the next Unicode 16 file or subdirectory in a specified directory after a previous call

to or .f_wfindfirst() f_wfindnext()

First call then, if a file is found, get the rest of the matching files by repeated calls to f_wfindfirst()

.f_wfindnext()

Format

int f_wfindnext (F_WFIND * find)

Arguments

Argument Description Type

find The Find structure (from).f_wfindfirst() F_WFIND *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 105 www.hcc-embedded.com

Example

 void mydir(void)

{

 F_WFIND find;

 if (!f_wfindfirst("A:/subdir/*.*", &find))

 {

 do

 {

 wprintf("filename:%s", find.filename);

 if (find.attr&F_ATTR_DIR)

 {

 wprintf(" directory\n");

 }

 else

 {

 wprintf(" size %d\n", find.len);

 }

 } while (!f_wfindnext(&find));

 }

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 106 www.hcc-embedded.com

f_wmove

Use this function to move a file or directory with a Unicode 16 name.

The source and target must be in the same volume. The original file or directory is lost.

Format

int f_wmove (

 const W_CHAR * filename,

 const W_CHAR * newname)

Arguments

Argument Description Type

filename The Unicode 16 name of the file or directory, with or

without the path.

W_CHAR *

newname The new Unicode 16 name of the file or directory. W_CHAR *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

 void myfunc(void)

{

 .

 .

 f_wmove("oldfile.txt", "newfile.txt");

 f_wmove("A:/subdir/oldfile.txt", "A:/newdir/oldfile.txt");

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 107 www.hcc-embedded.com

f_wrename

Use this function to rename a file or directory that has a Unicode 16 name.

Format

int f_rename (

 const W_CHAR * filename,

 const W_CHAR * newname)

Arguments

Argument Description Type

filename The Unicode 16 name of the file or directory, with or

without the path.

W_CHAR *

newname The new Unicode 16 name of the file or directory. W_CHAR *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

 void myfunc(void)

{

 .

 .

 f_wrename("oldfile.txt", "newfile.txt");

 f_wrename("A:/dir/oldfile.txt", "newfile.txt");

 .

 .

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 108 www.hcc-embedded.com

f_wgetpermission

Use this function to retrieve the file or directory permission field associated with a file that has a Unicode 16

name.

Every file/directory in the file system has an associated 32 bit field, known as the permission setting. Except

for the top 6 bits, this field is freely programmable by the developer and can, for example, be used to create

a user access system. The first six bits are reserved for use by the system, as follows:

#define FSSEC_ATTR_ARC (0x20UL << (31-6))

#define FSSEC_ATTR_DIR (0x10UL << (31-6))

#define FSSEC_ATTR_VOLUME (0x08UL << (31-6))

#define FSSEC_ATTR_SYSTEM (0x04UL << (31-6))

#define FSSEC_ATTR_HIDDEN (0x02UL << (31-6))

#define FSSEC_ATTR_READONLY (0x01UL << (31-6))

Format

int f_getpermission (

 const W_CHAR * filename,

 unsigned long * psecure)

Arguments

Argument Description Type

filename The Unicode 16 name of the file. W_CHAR *

psecure Where to store the permission field. unsigned long *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 109 www.hcc-embedded.com

Example

 void myfunc(void)

{

 unsigned long secure;

 if (!f_wgetpermission("subfolder", &secure))

 {

 wprintf("Permission is: %d", secure);

 }

 else

 {

 wprintf("Permission cannot be retrieved!");

 }

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 110 www.hcc-embedded.com

f_wsetpermission

Use this function to set the file or directory permission field associated with a file that has a Unicode 16

name.

Every file/directory in the file system has an associated 32 bit field, known as the permission setting. Except

for the top six bits, this field is freely programmable by the developer and can, for example, be used to

create a user access system. The first six bits are reserved for use by the system, as follows:

#define FSSEC_ATTR_ARC (0x20UL << (31-6))

#define FSSEC_ATTR_ARC (0x20UL << (31-6))

#define FSSEC_ATTR_DIR (0x10UL << (31-6))

#define FSSEC_ATTR_VOLUME (0x08UL << (31-6))

#define FSSEC_ATTR_SYSTEM (0x04UL << (31-6))

#define FSSEC_ATTR_HIDDEN (0x02UL << (31-6))

#define FSSEC_ATTR_READONLY (0x01UL << (31-6))

Format

int f_wsetpermission (

 const W_CHAR * filename,

 unsigned long secure)

Arguments

Argument Description Type

filename The Unicode 16 name of the file. W_CHAR *

secure The 32 bit number to associate with .filename unsigned long

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

void myfunc(void)

{

 f_mkdir("subfolder"); /* Create directory */

 f_wsetpermission("subfolder", 0x00FF0000);

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 111 www.hcc-embedded.com

f_wgettimedate

Use this function to get time and date information for a file or directory with a Unicode 16 name.

This field is automatically set by the system when a file or directory is created, and when a file is closed.

Date and Time Formats

The date and time fields are two 16 bit fields associated with each file/directory. If FAT compatibility is

required, these must use the standard type definitions for time and date given below. If FAT compatibility is

not required, you can use these fields as you require. See for information on porting.PSP Porting

The required format for the date for PC compatibility is a short integer ‘d’ (16 bit), such that:

Argument Valid values Format

Day 0-31 (d & 0x001F)

Month 1-12 ((d & 0x01E0) >> 5)

Years since 1980 0-119 ((d & 0xFE00) >> 9)

The required format for the time for PC compatibility is a short integer ‘t’ (16 bit), such that:

Argument Valid values Format

Two second increments 0-30 (t & 0x001F)

Minute 0-59 ((t & 0x07E0) >> 5)

Hour 0-23 ((t & 0xF800) >> 11)

Format

int f_wgettimedate (

 const W_CHAR * filename,

 unsigned short * pctime,

 unsigned short * pcdate)

Arguments

Argument Description Type

filename The Unicode 16 name of the file or directory. W_CHAR *

pctime Where to store the time. unsigned short *

pcdate Where to store the date. unsigned short *

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 112 www.hcc-embedded.com

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

 void myfunc(void)

{

 unsigned short t,d;

 if (!f_wgettimedate("subfolder", &t, &d))

 {

 unsigned short sec = (t & 0x001F) << 1;

 unsigned short minute = ((t & 0x07E0) >> 5);

 unsigned short hour = ((t & 0x0F800) >> 11);

 unsigned short day = (d & 0x001F);

 unsigned short month = ((d & 0x01E0) >> 5);

 unsigned short year = 1980 + ((d & 0xFE00) >> 9);

 wprintf("Time: %d:%d:%d", hour, minute, sec);

 wprintf("Date: %d.%d.%d", year, month, day);

 }

 else

 {

 wprintf("File time cannot retrieved!");

 }

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 113 www.hcc-embedded.com

f_wsettimedate

Use this function to set the time and date on a file or directory with a Unicode 16 name.

Date and Time Formats

The date and time fields are two 16 bit fields associated with each file/directory. If FAT compatibility is

required, these must use the standard type definitions for time and date given below. If FAT compatibility is

not required, you can use these fields as you require. See for information on porting.PSP Porting

The required format for the date for PC compatibility is a short integer ‘d’ (16 bit), such that:

Argument Valid values Format

Day 0-31 (d & 0x001F)

Month 1-12 ((d & 0x01E0) >> 5)

Years since 1980 0-119 ((d & 0xFE00) >> 9)

The required format for the time for PC compatibility is a short integer ‘t’ (16 bit), such that:

Argument Valid values Format

Two second increments 0-30 (t & 0x001F)

Minute 0-59 ((t & 0x07E0) >> 5)

Hour 0-23 ((t & 0xF800) >> 11)

Format

int f_settimedate (

 const W_CHAR * filename,

 unsigned short ctime,

 unsigned short cdate)

Arguments

Argument Description Type

filename The Unicode 16 name of the file or directory. W_CHAR *

ctime The creation time of the file or directory. unsigned short

cdate The creation date of the file or directory. unsigned short

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 114 www.hcc-embedded.com

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See .Error Codes

Example

 void myfunc(void)

{

 unsigned short ctime;

 unsigned short cdate;

 ctime = (15 << 11) + (30 << 5) + (23 >> 1); /* 15:30:22 */

 cdate = ((2002 - 1980) << 9) + (11 << 5) + (3); /* 2002.11.03. */

 f_wmkdir("subfolder"); /* Create directory */

 f_wsettimedate("subfolder", ctime, cdate);

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 115 www.hcc-embedded.com

f_wfilelength

Use this function to obtain the length of a file with a Unicode 16 name.

Format

long f_wfilelength (W_CHAR * filename)

Arguments

Argument Description Type

filename The Unicode 16 file name, with or without the path. W_CHAR *

Return values

Return value Description

filelength The length of the file.

-1 ; check the last The requested file does not exist or has an error

error.

Example

 int myreadfunc(W_CHAR *filename, char *buffer, long buffsize)

{

 F_FILE *file = f_wopen(filename, "r");

 long size = f_wfilelength(filename);

 if (!file)

 {

 wprintf("%s Cannot be opened!", filename);

 return 1;

 }

 if (size > buffsize)

 {

 wprintf("Not enough memory!");

 return 2;

 }

 f_read(buffer, size, 1, file);

 f_close(file);

 return 0;

}

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 116 www.hcc-embedded.com

6.4 Error Codes

The table below lists all the error codes that may be generated by API calls to HCC’s file systems. Please

note that some error codes are not used by every file system.

The header file to include for this list is .src/api/api_fs_err.h

Error Value Meaning

F_NO_ERROR 0 Successful execution.

F_ERR_INVALIDDRIVE 1 The specified drive does not exist.

F_ERR_NOTFORMATTED 2 The specified volume has not been formatted.

F_ERR_INVALIDDIR 3 The specified directory is invalid.

F_ERR_INVALIDNAME 4 The specified file name is invalid.

F_ERR_NOTFOUND 5 The file or directory could not be found.

F_ERR_DUPLICATED 6 The file or directory already exists.

F_ERR_NOMOREENTRY 7 The volume is full.

F_ERR_NOTOPEN 8 The file access function requires the file to be

open.

F_ERR_EOF 9 End of file.

F_ERR_RESERVED 10 Not used.

F_ERR_NOTUSEABLE 11 Invalid parameters for .f_seek()

F_ERR_LOCKED 12 The file has already been opened for writing

/appending.

F_ERR_ACCESSDENIED 13 The necessary physical read and/or write functions

are not present for this volume.

F_ERR_NOTEMPTY 14 The directory to be moved or deleted is not empty.

F_ERR_INITFUNC 15 No init function is available for a driver, or the

function generates an error.

F_ERR_CARDREMOVED 16 The card has been removed.

F_ERR_ONDRIVE 17 Non-recoverable error on drive.

F_ERR_INVALIDSECTOR 18 A sector has developed an error.

F_ERR_READ 19 Error reading the volume.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 117 www.hcc-embedded.com

Error Value Meaning

F_ERR_WRITE 20 Error writing file to volume.

F_ERR_INVALIDMEDIA 21 Media not recognized.

F_ERR_BUSY 22 The caller could not obtain the semaphore within

the expiry time.

F_ERR_WRITEPROTECT 23 The physical medium is write protected.

F_ERR_INVFATTYPE 24 The type of FAT is not recognized.

F_ERR_MEDIATOOSMALL 25 Media is too small for the format type requested.

F_ERR_MEDIATOOLARGE 26 Media is too large for the format type requested.

F_ERR_NOTSUPPSECTORSIZE 27 The sector size is not supported. The only

supported sector size is 512 bytes.

F_ERR_UNKNOWN 28 An unspecified error has occurred.

F_ERR_DRVALREADYMNT 29 The drive is already mounted.

F_ERR_TOOLONGNAME 30 The name is too long.

F_ERR_NOTFORREAD 31 Not for read.

F_ERR_DELFUNC 32 The delete drive driver function failed.

F_ERR_ALLOCATION 33 psp_malloc() failed to allocate the required

memory.

F_ERR_INVALIDPOS 34 An invalid position is selected.

F_ERR_NOMORETASK 35 All task entries are exhausted.

F_ERR_NOTAVAILABLE 36 The called function is not supported by the target

volume.

F_ERR_TASKNOTFOUND 37 The caller’s task identifier was not registered. This

is normally because has not been f_enterFS()

called.

F_ERR_UNUSABLE 38 The file system has become unusable. This is

normally a result of excessive error rates on the

underlying media.

F_ERR_CRCERROR 39 A CRC error has been detected on the file.

F_ERR_CARDCHANGED 40 The card that was being accessed has been

replaced with a different card.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 118 www.hcc-embedded.com

6.5 Types and Definitions

W_CHAR: Character and Wide Character Definition

W_CHAR is defined to if Unicode is disabled and to if it is enabled. Therefore is used char wchar W_CHAR

in structures where the element could be used in either type of system.

F_FILE: File Handle

This is the file handle, used as a reference for accessing files.

The handle is obtained when a file is opened and released when it is closed.

F_FIND

The structure takes this form:F_FIND

Element Type Description

attr char The attribute setting of the file.

filename [F_MAXPATHNAME] char The long file name.

ctime unsigned short The creation time.

cdate unsigned short The creation date.

filesize unsigned long The length of the file.

secure unsigned long The secure setting.

findfsname FS_NAME The Find properties.

findpos unsigned short The Find position.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 119 www.hcc-embedded.com

F_WFIND

The structure takes this form:F_WFIND

Element Type Description

attr char The attribute setting of the file.

filename [F_MAXPATHNAME] W_CHAR The long file name.

ctime unsigned short The creation time.

cdate unsigned short The creation date.

filesize unsigned long The length of the file.

secure unsigned long The secure setting.

findfsname FS_NAME The Find properties.

findpos unsigned short The Find position.

F_STAT Structure

The structure takes this form:F_STAT

Element Type Description

filesize unsigned long The size of the file.

createdate unsigned short The creation date.

createtime unsigned short The creation time.

secure unsigned long

drivenum int The number of the volume.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 120 www.hcc-embedded.com

F_SPACE

The structure takes this form:F_SPACE

Element Type Description

total unsigned long The total size in bytes of the disk.

free unsigned long The number of free bytes on the disk.

used unsigned long The number of used bytes on the disk.

bad unsigned long The number of bad bytes on the disk.

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 121 www.hcc-embedded.com

1.

2.

1.

2.

3.

7 Testing the System
Two test suites are provided for exercising the file system and the flash drivers, and ensuring that all are

working correctly.

Both test programs require the functions defined and implemented (as samples) in . Port testport_ram_s.c

these functions to your system. Refer to the comments and simple code for reference.

7.1 File System Test

This program exercises most of the functionality of the file system, including file read/write/append/seek/file

content, directories and file manipulation functions.

To use the test program:

Include and in your test project.test_s.c test_s.h

Call the following to execute the test code:

void f_dotest(void)

7.2 Flash Driver Test

This code tests your ported flash driver in isolation, to ensure that it is ported correctly and is stable.

To use this test program:

Include and in your test project.testdrv_s.c testdrv_s.h

Configure the options in listed below.testdrv_s.c

Call the following to execute the test code:

void f_dotestdrv (FS_PHYGETID phyfunc)

Note: Errors in the execution of this test indicate that there is an error in the implementation of the

driver. Contact if you need further advice.support@hcc-embedded.com

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 122 www.hcc-embedded.com

Configuration Options in testdrv_s.c

Check and set the following #DEFINE values in the file before running a test.

DESCSIZE

The descriptor size; set this according to your driver. The default is NOR_DESCSIZE.

SECTORSIZE

The sector size; set this according to your driver. The default is NOR_SECTORSIZE.

NANDFLASH

Set this if NAND flash is used, otherwise keep the default of 0.

Note: You can use SKIP_MASK, SKIP_LO and SKIP_HI to skip some blocks during testing, speeding

up the test. Higher bits of block numbers are masked off by SKIP_MASK and the result is checked if it

is in the range between SKIP_LO and SKIP_HI.

SKIP_MASK

Keep SKIP_MASK at the default of 0 to perform a complete test. It masks the higher bits of block numbers.

SKIP_LO

The default is 3.

SKIP_HI

The default is (SKIP_MASK - 4).

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 123 www.hcc-embedded.com

8 Integration
This section describes all aspects of the SafeFLASH module that require integration with your target project.

This includes porting and configuration of external resources.

8.1 Requirements

The SafeFLASH system is designed to be as open and portable as possible. No assumptions are made

about the functionality or behavior of the underlying operating system.

For SafeFLASH to work at its best, perform the porting work outlined below. This is a very straightforward

task for an experienced engineer.

Stack Requirements

SafeFLASH file system functions are always called in the context of the calling thread or task. Naturally the

functions require stack space and you should allow for this in applications that call file system functions.

Typically calls to the file system use <2KB of stack.

Timeouts

Flash devices are normally controlled by hardware control signals. As a result there is no explicit need for

any timeouts to control exception conditions. However, some operations on flash devices are relatively slow

and it is often worthwhile to schedule other operations while waiting for them to complete. For example, a

NOR flash erase typically takes two seconds and a NAND flash erase takes two milliseconds.

For NOR flash in the sample driver, the function is used to check for the 29lvxxx.c DataPoll()

completion of operations. This routine can be modified to force scheduling of the system, or to use

the host system's event generation mechanism so that other operations can be performed while

waiting.

For NAND flash in the K9F2816X0C sample driver, the function is used to check for nandwaitrb()

the completion of operations. This routine can be modified to force scheduling of the system, or to

use the host system's event generation mechanism so that other operations can be performed while

waiting.

Memory Allocation

Some larger buffers are required by SafeFLASH to handle FATs in RAM, and also to buffer write processes.

A call is made to each driver to get the specific size of memory required for that drive. It is then up to you to

allocate this memory from the system.

Buffer sizes depend on the particular chips being used and their configurations. For further information, see

the descriptions of the and functions in the relevant driver manuals.f_mountdrive() fs_getmem_xxx()

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 124 www.hcc-embedded.com

1.

2.

3.

4.

8.2 OS Abstraction Layer

All HCC modules use the OS Abstraction Layer that allows the module to run seamlessly with a wide variety

of RTOSes, or without an RTOS.

This module uses the following OAL components:

OAL resource Number required

Tasks 0

Mutexes 1 per volume plus 1

Each volume needs protecting by a mutex

mechanism to ensure that file access is safe.

Events 0

Note: If the Common API (CAPI) is used (that is, FS_CAPI_USED is defined in the file), config_safe.h

the above mutex functions are replaced by the equivalent functions from the CAPI. See the HCC File

 for details.System Common API User Guide

Within the standard API there is no support for the current working directory to be maintained on a per-caller

basis. By default, the system provides a single that can be changed by any user. The is cwd cwd

maintained on a per-volume basis, or on a per-task basis if multitasking is implemented.

For a multitasking system, do the following:

Set F_MAXTASK to the maximum number of tasks that can simultaneously maintain access to the

file system. This effectively creates a table of s for each task.cwd

Use the OAL's function to get a unique identifier for the calling task.oal_task_get_id()

Ensure that any task using the file system calls before any other API calls; this ensures f_enterFS()

that the calling task is registered.

Ensure that for any application that has finished using the file system, or is terminated, f_releaseFS()

is called with the task's unique identifier. This frees that table entry for use by other applications.

Once these steps are implemented, each caller is logged as it acquires the mutex, and a current working

directory is associated with it.

Note: If the CAPI is used, is replaced by the equivalent function from the CAPI. See oal_task_get_id()

the for details.HCC File System Common API User Guide

SafeFLASH File System User Guide

Copyright HCC Embedded 2016 125 www.hcc-embedded.com

8.3 PSP Porting

The Platform Support Package (PSP) is designed to hold all platform-specific functionality, either because it

relies on specific features of a target system, or because this provides the most efficient or flexible solution

for the developer.

The SafeFLASH module makes use of the following standard PSP function:

Function Package Element Description

psp_getcurrenttimedate() psp_base psp_rtc Gets the current time and date.

Note: If the Common API (CAPI) is used (that is, F_CAPI_USED is defined in) then config_safe.h

 is replaced by the equivalent function from the CAPI. See the psp_getcurrenttimedate() HCC File

 for further information.System Common API User Guide

	System Overview
	Introduction
	Feature Check
	Packages and Documents
	Packages
	Documents

	Change History

	Source File List
	API Interface
	Configuration File
	Version File
	SafeFLASH System
	Test Files

	Configuration Options
	System Features
	Other Media Types
	Power Fail Safety
	Multiple Open Files in a Volume
	Wildcards
	Static Wear Leveling

	Getting Started
	Application Programming Interface
	Module Management
	f_init

	File System API
	General Management
	f_enterFS
	f_releaseFS
	f_getlasterror
	f_getversion
	fs_staticwear

	Volume Management
	f_mountdrive
	f_unmountdrive
	f_chdrive
	f_getdrive
	f_checkvolume
	f_format
	f_get_drive_count
	f_get_drive_list
	f_getlabel
	f_setlabel
	f_get_oem
	f_getfreespace

	Directory Management
	f_mkdir
	f_chdir
	f_rmdir
	f_getcwd
	f_getdcwd

	File Access
	f_open
	f_close
	f_flush
	f_read
	f_write
	f_getc
	f_putc
	f_eof
	f_seteof
	f_tell
	f_seek
	f_rewind
	f_truncate
	f_ftruncate

	File Management
	f_delete
	f_findfirst
	f_findnext
	f_move
	f_rename
	f_getpermission
	f_setpermission
	f_gettimedate
	f_settimedate
	f_fstat
	f_stat
	f_filelength

	File System Unicode API
	Unicode Directory Management
	f_wmkdir
	f_wchdir
	f_wrmdir
	f_wgetcwd
	f_wgetdcwd

	Unicode File Access
	f_wopen
	f_wtruncate

	Unicode File Management
	f_wdelete
	f_wfindfirst
	f_wfindnext
	f_wmove
	f_wrename
	f_wgetpermission
	f_wsetpermission
	f_wgettimedate
	f_wsettimedate
	f_wfilelength

	Error Codes
	Types and Definitions
	W_CHAR: Character and Wide Character Definition
	F_FILE: File Handle
	F_FIND
	F_WFIND
	F_STAT Structure
	F_SPACE

	Testing the System
	File System Test
	Flash Driver Test
	Configuration Options in testdrv_s.c

	Integration
	Requirements
	Stack Requirements
	Timeouts
	Memory Allocation

	OS Abstraction Layer
	PSP Porting

