D Hcc TINY File System User's Guide

TINY File System User's
Guide

Version 2.00

For use with TINY Versions 3.00 and above

Date: 15-Jul-2014 12:39

All rights reserved. This document and the associated software are the sole property of HCC
Embedded. Reproduction or duplication by any means of any portion of this document without the
prior written consent of HCC Embedded is expressly forbidden.

HCC Embedded reserves the right to make changes to this document and to the related software at
any time and without notice. The information in this document has been carefully checked for its
accuracy; however, HCC Embedded makes no warranty relating to the correctness of this document.

Copyright HCC Embedded 2014 1 www.hcc-embedded.com

TINY File System User's Guide

Table of Contents

System Overview 4
Introduction 4
Feature Check 5
Packages 5
Documents 6
Disclaimer 6
About HCC Embedded 6
Getting Help 6

Source File List 7
API Header File 7
Configuration File 7
TINY File System 7

Driver Files 8
Version File 8

Configuration Options 9
Summary 9
Including and Excluding API Functions 10
Other Build Options 11

API 13
Module Management 13

f_init 13
File System API 14
Volume Management 14
f initvolume 14

f format 15

f getfreespace 16
f_get_serial 17

f set serial 18

f get size 19
Directory Management 20
f_mkdir 20
f_chdir 21

f rmdir 22

f _getcwd 23

File Access 24
f_open 24

f close 26

f _read 27

f write 29

f getc 30

f putc 31

f eof 32

Copyright HCC Embedded 2014 2 www.hcc-embedded.com

TINY File System User's Guide

f tell 33

f seek 34

f rewind 35

f ftruncate 36

File Management 37

f delete 37

f findfirst 38

f findnext 40

f rename 42

f gettimedate 43

f settimedate 45
f_filelength a7

f _getpermission 48

f setpermission 50

Power Management 51
f_enter_low_power 51
f_exit_low_power 52

Error Codes 53
Types and Definitions 54
F_FILE: File Handle 54
F_FIND Structure 54
F_SPACE Structure 54
Integration 55
OS Abstraction Layer (OAL) 55
PSP Porting 56

Copyright HCC Embedded 2014 3 www.hcc-embedded.com

TINY File System User's Guide

1 System Overview

1.1 Introduction

This guide is intended for use by embedded software engineers who have a knowledge of the C
programming language and standard file APIs. It is for those who want to implement a full-featured, fail-safe
flash file system for use in resource-constrained applications.

TINY is designed for use with NOR Flash with erasable sectors <4KB. This includes many serial flash
devices and even the internal flash on some MCUs. Typical devices include Atmel® DataFlash AT45,
MSP430 internal flash, and many serial flash devices including ST and Microchip SST Serial Flash.

Limiting the application of TINY to this subset of NOR flash devices makes TINY a compact and reliable file
system. TINY eliminates many fragmentation and flash management problems and gives a compact and
reliable file system that provides a full set of features, even on a low cost microcontroller.

The system structure is shown in the diagram below:

[User application

USER
APPLICATIONS

File System API

TINY File System

Media Driver Interface

Y Y)
— NN
FILE SYSTEM

4

y

< m
1T
[Media Driver] gz
= 74
a
A
\ 4
=
S«
: %0
Storage Media E =

Copyright HCC Embedded 2014 4 www.hcc-embedded.com

TINY File System User's Guide

This file system is designed specifically for use with RAM. It creates pseudo-flash sectors to provide a solid
logical framework for building the fail-safe system. It has been carefully crafted to ensure the reliability
required by embedded systems, and to minimize code space and RAM requirements.

TINY is designed specifically for media in which the erasable sector size is relatively small, typically less
than 2KB. For large NOR and NAND flash devices, the erasable sector size tends to be large (32KB or
more) and, as a consequence, file systems such as HCC's SAFE must handle fragmented blocks. TINY's
design assumes that the target's erasable blocks will not become fragmented and this allowed HCC to build
a small footprint SAFE file system. This has given large improvements in efficiency, resulting in saving of
resources (code, RAM, CPU cycles) and power.

This manual describes the TINY file API.

1.2 Feature Check

The main features of the system are the following:

® Code size 8.2KB.

®* RAM usage <256 bytes.
* Fail safety.

®* ANSI‘C.

® Long filename support.
® Multiple open files.

® Test suite.

® Zero copy.

® Dynamic wear leveling.
®* Reentrant.

® Support for many small sector flash types.

1.3 Packages

The table below lists the packages that need to be used with this module, and also optional modules which
may interact with this module depending on your particular system's design:

Package Description
hcc_base_doc This contains the two guides that will help you get started.
fs_tiny The TINY file system package described in this manual.

media_drv_base The Media Driver base package that provides the base for all media drivers that attach
to the file system.

fs_tiny_drv_ram The Media Driver RAM package, used for creating a RAM drive.

Additional packages

Other packages may also be provided to work with TINY. Examples include media drivers and PSP
extensions for specific targets.

Copyright HCC Embedded 2014 5 www.hcc-embedded.com

TINY File System User's Guide

1.4 Documents
HCC Firmware Quick Start Guide

This document describes how to install packages provided by HCC in the target development environment.
Also follow the Quick Start Guide when HCC provides package updates.

HCC Source Tree Guide

This document describes the HCC source tree. It gives an overview of the system to make clear the logic
behind its organization.

HCC TINY File System User's Guide

This is this document.

1.5 Disclaimer

Although every attempt has been made to make the system as simple to use as possible, developers must
understand fully the requirements of the systems they are designing in order to get the best practical benefit
from the system. HCC Embedded has made strenuous efforts to test and verify the correctness of its
products, but it remains the sole responsibility of the user to ensure that these products meet the developer's
requirements.

1.6 About HCC Embedded

HCC Embedded has been supplying professional middleware to the embedded industry for more than a
decade. Our software is ‘white labeled’ by many of the industry’s leading RTOS companies and is deployed
in thousands of successful and innovative applications.

HCC Embedded is focused entirely on embedded communications and storage. In order to effectively deploy
our software, we have created an advanced embedded framework that enables our software to easily drop
into any environment, regardless of processor, tools or RTOS.

1.7 Getting Help

HCC Embedded has a dedicated development team with vast experience of developing embedded systems.
HCC Embedded is always interested in porting or developing its systems for new environments.

Technical questions can be directed to support@hcc-embedded.com.

For custom development work or porting, please contact sales@hcc-embedded.com.

Copyright HCC Embedded 2014 6 www.hcc-embedded.com

TINY File System User's Guide

2 Source File List

This section describes all the source code files included in the system. These files follow the HCC
Embedded standard source tree system, described in the HCC Source Tree Guide. All references to file
pathnames refer to locations within this standard source tree, not within the package you initially receive.

Note: Do not modify any files except the configuration file and your driver files.

2.1 API Header File

The file src/api/api_tiny.h should be included by any application using the system. This is the only file that
should be included by an application using this module. For details of the functions, see API.

2.2 Configuration File

The file src/config/config_tiny.h contains all the configurable parameters of the system. Configure these as
required. This is the only file in the module that you should modify. For details of these options, see
Configuration Options.

2.3 TINY File System

These files should only be modified by HCC.

File Description
src/tiny/common/f_api.c API source code.
src/tiny/common/f_dir.c Directory handling source code.
src/tiny/common/f_dir.h Directory handling header file.
src/tiny/common/f_file.c File handling source code.
srcl/tiny/common/f_file.h File handling header file.
src/tiny/common/f_util.c Utilities source code.
src/tiny/common/f_util.h Utilities header file.

src/tiny/common/f_volume.c Volume handling source code.
src/tiny/common/f_volume.h Volume handling header file.
src/tiny/common/tiny.h File system configuration definitions.

src/tiny/common/tiny_types.h User definitions file.

Copyright HCC Embedded 2014 7 www.hcc-embedded.com

TINY File System User's Guide

Driver Files

The file src/tiny/driver/f_driver.h is the flash driver header file.

The following files are for specific storage media:

File Description
src/tiny/driver/xxx/xxx.c = Source code for target specific driver.
src/tiny/driver/xxx/xxx.h = Header file for target specific driver.

src/xxxDriver/flashset.h Definition header for system.

2.4 Version File

The file src/version/ver_tiny.h contains the version number of this module. This version number is checked
by all modules that use this module to ensure system consistency over upgrades.

Copyright HCC Embedded 2014 8 www.hcc-embedded.com

TINY File System User's Guide

3 Configuration Options

Set the system configuration options in the file src/config/config_tiny.h. This section lists the available

configuration options and their default values.

3.1 Summary

This table summarizes the options. For more details on any option, see the sections which follow.

Option
F_WILDCARD
QUICK_WILDCARD_SEARCH
F_CHECKNAME
F_CHECKMEDIA
F_DIRECTORIES
F_CHDIR

F_MKDIR

F_RMDIR
F_GETCWD
F_DIR_OPTIMIZE
F_FINDING
F_FILELENGTH
F_GETTIMEDATE
F_SETTIMEDATE
F_GETFREESPACE
F_DELETE
F_RENAME
F_GETPERMISSION
F_SETPERMISSION
F_SEEK_WRITE

F_TRUNCATE

Default

1

Description

Enables use of wildcards.

Enables quick wildcard search.
Check for valid file name characters.
Check for different media at startup.
Enables usage of directories.
Enables f_chdir().

Enables f_mkdir().

Enables f_rmdir().

Enables f_getcwd().

Enables directory storage optimization.
Enables f_findfirst() and f_findnext().
Enables f_filelength().

Enables f_gettimedate().

Enables f_settimedate().

Enables f_getfreespace().

Enables f_delete().

Enables f_rename().

Enables f_getpermission().
Enables f_setpermission().
Enables seeking for write.

Enables f_truncate().

Copyright HCC Embedded 2014

9 www.hcc-embedded.com

TINY File System User's Guide

Option Default
F_LOW_POWER 0
SMALL_FILE_OPT 1
QUICK_FILE_SEARCH 1
USE_ECC 0
RTOS_SUPPORT 0

F_FILE_CHANGED EVENT 0

F_FILE_CHANGED_MAXPATH 64

F_MAX_OPEN_FILE 2ul

F_MAX_FILE_NAME_LENGTH 16ul

F_MAX_FILE 32ul
F_MAX_DIR 16ul
F_ATTR_SIZE 1
F_COPY_BUF_SIZE 32
F_ATTR DIR 0x10

Description

Enables low power support.

Enables small file optimization.

Enables quick search.

Enables use of ECC on file management pages.
Enables RTOS support.

Makes a file state change an event.

Maximum path length the file system will handle if long
filenames are not used.

Maximum number of files that can be open simultaneously.
Maximum length of a file or directory name.

Maximum number of files in the system.

Maximum number of directories in the system.

Size of attribute in bytes (1/2/4)

Size of a copy buffer.

Directory attribute (this must be in the F_ATTR_SIZE range).

3.2 Including and Excluding API Functions

By defining functions to be included in, or excluded from, the file system, you can control the amount of
space it uses. This is more manageable than using libraries, where adding or removing a piece of code can
cause unpredictable changes in the size of your code.

Every entry in the above table which has the text "Enables <function name>" in the Description column is a
function which you can disable if you do not need it in your system. For example, setting the F_CHDIR

option to O disables the f_chdir() function.

The F_FINDING option disables two functions: f_findfirst() and f_findnext().

Copyright HCC Embedded 2014

10 www.hcc-embedded.com

TINY File System User's Guide

3.3 Other Build Options

This section gives more detail on those configuration options which do more than simply enable/disable a
single function.

F_WILDCARD

This enables use of wildcards. The default is 1.

QUICK_WILDCARD_SEARCH

This enables quick wildcard search; this is useful if F_MAX_FILE is large. The default is zero.
F_CHECKNAME

This enables checking for valid name characters. If this is enabled (the default), the system:

® Accepts multiple / or \ characters.

® Accepts multiple * characters in wildcards.

®* Handles a/ at the end of a dirname if f_mkdir() is called (for example, a/b/).
®* Handles a/ at the end of a filename if f_open() is called.

® Handles upper and lower case characters.

F_CHECKMEDIA

This enables checking for different media at startup (TINY with different drive geometry). The default is 1.
F_DIRECTORIES

This enables use of directories, making the directory API functions available. The default is 1.
F_DIR_OPTIMIZE

This enables directory storage optimization. The default is 1.

F_SEEK_WRITE

This enables seeking for write. The default is 1.

F_LOW_POWER

This enables low power support. The default is 0.

SMALL_FILE_OPT

This enables small file optimization. The default is 1.

QUICK_FILE_SEARCH

This enables quick search; this is useful if F_ MAX_FILE is large. The default is 1.

Copyright HCC Embedded 2014 11 www.hcc-embedded.com

TINY File System User's Guide

USE_ECC
This enables use of ECC on file management pages. The default is 0.
RTOS_SUPPORT

This enables RTOS support. The default is 0.

F_FILE_CHANGED_EVENT

Set this to 1 if you want to a file state change to be treated as an event. The default is 0.
F_FILE_CHANGED_MAXPATH

The maximum path length the file system will handle if long filenames are not used. This is only used if
F_FILE_CHANGED_EVENT is enabled.

F_MAX_OPEN_FILE
The maximum number of files that can be open simultaneously. The default is 2ul.
F_MAX_FILE_NAME_LENGTH

The maximum length of a file or directory name. The default is 16ul.
F_MAX_FILE

The maximum number of files in the system. The default is 32ul.

F_MAX_DIR

The maximum number of directories in the system. The default is 16ul.
F_ATTR_SIZE

The size of the directory attribute in bytes (1/2/4). The default is 1.
F_COPY_BUF_SIZE

The size of a copy buffer. The default is 32.

F_ATTR_DIR

The directory attribute (this must be in the F_ATTR_SIZE range). The default is 0x10.

Copyright HCC Embedded 2014 12 www.hcc-embedded.com

TINY File System User's Guide

4 API

This section documents the Application Programming Interface. It includes all the functions that are available
to an application program.

4.1 Module Management

f init
Use this function to initialize the file system. Call it once at start-up.

Format
unsigned char f_init (void)

Arguments

Argument

None.
Return values

Return value Description
F_NOERR Successful execution.
F ERR_OS OSerror.

Else See Error Codes.

Example:

voi d nain()

{

f_init(); /* initialize fil esystem */

Copyright HCC Embedded 2014 13 www.hcc-embedded.com

TINY File System User's Guide

4.2 File System API

Volume Management

f initvolume

Use this function to initialize the volume.
Call this every time the file system is started.

Format

unsi gned char f_initvolume (void)

Arguments

Argument

None.
Return values

Argument Description
F_NOERR Successful execution.

Else See Error Codes.

Example

void nyinitfs(void) {
unsi gned char ret;

/* Initialize Drive */

ret=f_initvolune();
if(ret)
printf(“Drive init error %\n",ret);

Copyright HCC Embedded 2014 14

www.hcc-embedded.com

TINY File System User's Guide

f format

Use this function to format the specified drive.

If the media is not present, this function fails. If the call is successful, all data on the specified volume are
destroyed and any open files are closed.

Format

unsi gned char f_format (void)

Arguments

Argument

None.
Return values

Return value Description
F_NOERR Successful execution.

Else See Error Codes.

Example

void nyinitfs()

{
unsi gned char ret;
f_initvolune();
ret=f _format();
if(ret)
printf(“Unable to format drive: Error %" ,ret);
el se
printf(“Drive formatted correctly”);
}

Copyright HCC Embedded 2014 15 www.hcc-embedded.com

TINY File System User's Guide

f_getfreespace

Use this function to fill a structure with information about the drive space usage: total space and free space.

Format

unsi gned char f_getfreespace (F_SPACE * sp)

Arguments
Argument Description Type
sp On return, a pointer to an F_SPACE structure. F_SPACE *

Return values

Return value Description
F_NOERR Successful execution.

Else See Error Codes.

Example

voi d i nfo(void)
{
F_SPACE space;
unsi gned char ret;
/* get free space on current drive */
ret = f_getfreespace(space);
if(lret)
printf("There are % bytes total, \
%l bytes free.",\
space.total, space.free);
el se
printf("\nError % reading drive\n", ret);

Copyright HCC Embedded 2014 16 www.hcc-embedded.com

TINY File System User's Guide

f_get_serial

Use this function to get the volume’s serial number.

Format

unsi gned char f_getserial (unsigned long * serial)

Arguments
Argument Description Type
serial Where to store the serial number. unsigned long *

Return values

Return value Description
F_NOERR Successful execution.

Else See Error Codes.

Copyright HCC Embedded 2014 17 www.hcc-embedded.com

TINY File System User's Guide

f set_serial

Use this function to set the volume’s serial number.

Format

unsi gned char f_set_serial (unsigned long serial)

Arguments
Argument Description Type
serial The serial number. unsigned long

Return values

Return value Description
F_NOERR Successful execution.

Else See Error Codes.

Copyright HCC Embedded 2014 18

www.hcc-embedded.com

TINY File System User's Guide

f_get_size

Use this function to get the total size of the flash the file system can use.

Format

unsi gned char f_get_size (unsigned long * size)

Arguments
Argument Description Type
serial Where to write the size. unsigned long *

Return values

Return value Description
F_NOERR Successful execution.

Else See Error Codes.

Copyright HCC Embedded 2014 19 www.hcc-embedded.com

TINY File System User's Guide

Directory Management

Note: The following functions are only available if the F_DIRECTORIES configuration option is enabled.

f _mkdir

Use this function to create a new directory.

Format

int f_nkdir (const char * path)

Arguments
Argument Description Type
path Name of directory to create. const char *

Return values

Return value Description
F _NOERR Successful execution.

Else See Error Codes.

Example

voi d nyfunc(voi d)
{

f _nkdir (“subfol der”); /*creating directory*/
f _nkdir (“subfol der/subl”);

f _nkdi r (“subf ol der/sub2")

f _nkdir (“/subf ol der/ sub3”

Copyright HCC Embedded 2014 20

www.hcc-embedded.com

TINY File System User's Guide

f_chdir

Use this function to change the current working directory.

Format

int f_chdir (const char * path)

Arguments
Argument Description Type
path Name of target directory. const char *

Return values

Return value Description
F_NOERR Successful execution.

Else See Error Codes.

Example

voi d nyfunc(voi d)

{
f_nkdir(“subfol der”);
f_chdir(“subfol der”); / *change directory*/
f _nkdir(“sub2”);
f_chdir(“..”); /*go to upward*/
f_chdir(“subfol der/sub2”); /*goto into sub2 dir*/
}

Copyright HCC Embedded 2014 21 www.hcc-embedded.com

TINY File System User's Guide

f_rmdir

Use this function to remove a directory.

The function returns an error code if:

® The target directory is not empty.
® The directory is read-only.

Format

int f_rmdir (const char * path)

Arguments

Argument Description

path Name of directory to remove.

Return values

Return value Description
F_NOERR Successful execution.

Else See Error Codes.

Example

voi d nyfunc()

{
f _nkdir (“subfol der”); /*creating directories*/
f _nkdi r (“subf ol der/subl1”)
. doing sone work
f_rmdir(“subfol der/subl”);
f_rmdir(“subfol der”); /*renpves directory*/
}

Type

const char *

Copyright HCC Embedded 2014

22

www.hcc-embedded.com

TINY File System User's Guide

f_getcwd

Use this function to get the current working directory.

Format

int f_getcwd (
char * pat h,
int maxl en)

Arguments

Argument Description

path Where to store the current working directory string. char *

maxlen Length of the buffer. int
Return values

Return value Description
F_NOERR Successful execution.

Else See Error Codes.

Example

#defi ne BUFFLEN 256
voi d nyfunc()

{
char buffer[BUFFLEN ;
unsi gned char ret;
ret = f_getcwd(buffer, BUFFLEN);
if (!ret)
printf (“current directory is %", buffer);
el se
printf (“Error %", ret)
}

Copyright HCC Embedded 2014 23 www.hcc-embedded.com

TINY File System User's Guide

File Access

f open

Use this function to open a file. The following modes are allowed for opening:

Mode Description

"t Open existing file for reading. The stream is positioned at the beginning of the file.

"r+" Open existing file for reading and writing. The stream is positioned at the beginning of the file.

"w" Truncate file to zero length or create file for writing. The stream is positioned at the beginning of
the file.

"w+" Open a file for reading and writing. The file is created if it does not exist; otherwise it is truncated.
The stream is positioned at the beginning of the file.

"a" Open for appending (writing to end of file). The file is created if it does not exist. The stream is
positioned at the end of the file.

"at+" Open for reading and appending (writing to end of file). The file is created if it does not exist. The

stream is positioned at the end of the file.

Note the following:

® The same file can be opened multiple times in “r" mode.

* A file can only be opened once at a time in a mode which gives write access (that is, in “r+, “w”, “w+" |
“a” or “a+” mode).

®* The same file can be opened multiple times in “r" mode and at the same time once in one of the “r+,
“a” or “a+” modes which give write access.

® |f afile is opened in “w” or “w+” mode, a lock mechanism prevents it being opened in any other mode.
This prevents opening of the file for reading and writing at the same time.

Note: There is no text mode. The system assumes that all files are in binary mode only.

Format

F FILE * f_open (
const char * fil enane,
const char * node)

Copyright HCC Embedded 2014 24 www.hcc-embedded.com

TINY File System User's Guide

Arguments

Argument Description Type
filename File to be opened. const char *

mode Opening mode. const char *

Return values

Return value Description

F _FILE * Pointer to the associated opened file handle.
0 File could not be opened.
Example

voi d nyfunc()
{
F FILE *file;
char c;
file=f_open(“nyfile.bin","r");
if ('file)
{
printf (“File cannot be opened!”);
return;

}
f_read(&c,1,1,file); /* read lbyte */

printf (“"% is read fromfile”,c);

f_close(file);

Copyright HCC Embedded 2014

25

www.hcc-embedded.com

TINY File System User's Guide

f close

Use this function to close a previously opened file.

Format

int f_close (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle Handle of target file. F_FILE *
Return values

Return value Description
F_NOERR Successful execution.

Else See Error Codes.

Example

voi d nyfunc()

{
F_FILE *file;
char *string="ABC’;
file=f_open(“nyfile.bin”,"w);
if (!file)
{
printf (“File cannot be opened!”);
return;
}
f_wite(string,3,1,file); /* wite 3 bytes */
if (!f_close(file))
{
printf (“File stored”);
}
else printf (“file close error”);
}

Copyright HCC Embedded 2014 26

www.hcc-embedded.com

TINY File System User's Guide

f read

Use this function to read bytes from the current file position. The current file pointer is increased by the

number of bytes read. The file must be opened in “r’, "r+", "w+" or "a+" mode.
Format
long f_read (
void * bbuf ,
| ong si ze,
| ong si ze_st,
F_FILE * filehandle)
Arguments
Argument Description Type
bbuf A pointer to the buffer to store data in. void *
size The size of items to be read. long
size_st Number of items to be read. long
filehandle The handle of the target file. F_FILE *

Return values

Return value Description
number Number of items read.

-1 Error.

Copyright HCC Embedded 2014 27 www.hcc-embedded.com

TINY File System User's Guide

Example

int nyreadfunc(char *filenanme, char *buffer, |ong buffsize)

{
F_FILE *file=f_open(filenane,”r");
long size=f_filelength(filenane);
if ('file)
{
printf (“% Cannot be opened!”,fil enane);
return 1,
}
if (f_read(buffer, 1, size, file)!=size)
{
printf (“Less bytes read than requested”);
}
f_close(file);
return O;
}

Copyright HCC Embedded 2014 28 www.hcc-embedded.com

TINY File System User's Guide

f_write

Use this function to write data into a file at the current file position. The current file position is increased by

the number of bytes successfully written. The file must be opened with “w”, “w+", "a+", "r+", or “a”.

Format

long f_wite (

void * bbuf,
| ong si ze,
| ong size_st,

F FILE * fil ehandl e)

Arguments
Argument Description Type
bbuf Buffer which contains the data. void *
size The size of items to be written. long
size_t The number of items to write. long

filehandle The handle of the target file. F FILE *

Return values

Return value Description

number Number of items written.
-1 Failure.
Example

voi d nyfunc(void)

{
F_FILE *file;
char *string="ABC’;
file=f_open(“nyfile.bin","w);
if (!file)
{
printf (“File cannot be opened!”);
return;
}
if (f_wite(string,1,3,file)!=3)
{ /* wite 3 bytes*/
printf (“Not all bytes were witten”);
}
f_close(file);
}

Copyright HCC Embedded 2014 29 www.hcc-embedded.com

TINY File System User's Guide

f_getc

Use this function to read a character from the current position in the open target file.

Format

int f_getc (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The handle of the open target file. F _FILE *
Return values

Return value Description

-1 Read failed. See Error Codes.
value The character read from the file.
Example

int nyreadfunc(char *filename, char *buffer, |ong buffsize)

{
int ch;
F_FILE *file=f_open(filenane,"r");
while ((ch=f_getc(file)) !'=-1)
{
if (!buffsize) break;
*puf f er ++=ch;
buf f si ze--;
}
f_close(file);
return O;
}

Copyright HCC Embedded 2014 30 www.hcc-embedded.com

TINY File System User's Guide

f _putc
Use this function to write a character to the specified open file at the current file position. The current file

position is incremented.

Format

int f_putc (
i nt ch,
F_FILE * filehandl e)

Arguments
Argument Description Type
ch Character to write. int

filehandle Handle of open target file. F _FILE *
Return values

Return value Description

-1 Write failed.
value Successfully written character.
Example

voi d nyfunc (char *filenanme, |ong num
{
int ch="A";
F FILE *file=f_open(filenane,"w);
whi | e (nun®0)
{
num - ;
if(ch !'=f_putc('ch', file))
{
printf("Error!!1");
br eak;
}
}
f_close(file);
return O;

Copyright HCC Embedded 2014 31 www.hcc-embedded.com

TINY File System User's Guide

f_eof

Use this function to check whether the current position in the open target file is the end of the file.

Format

int f_eof (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle Handle of open target file. F_FILE *
Return values

Return value Description

0 Not at end of file.
Else End of file or an error; see Error Codes.
Example

int nyreadfunc(char *filename, char *buffer, |ong buffsize)

{
F_FILE *fil e=f_open(filename,”r");
while (!f_eof())
{
if (!buffsize) break;
buf fsi ze--;
f_read(buffer++,1,1,file);
}
f_close(file);
return O;
}

Copyright HCC Embedded 2014 32 www.hcc-embedded.com

TINY File System User's Guide

f tell

Use this function to obtain the current read-write position in the open target file.

Format

long f_tell (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle Handle of open target file. F_FILE *

Return values

Return value Description

filepos Current read or write file position.
Else See Error Codes.
Example

int nyreadfunc(char *filenane, char *buffer,

{

F_FILE *fil e=f_open(filename,”r");

printf (“Current position %d",f _tell(file));
f_read(buffer,1,1,file); /* read 1 byte */

printf (“Current position %",f_tell(file));
f_read(buffer,1,1,file); /* read 1 byte */

printf (“Current position %" ,f_tell(file));

f_close(file);
return O;

I ong buffsize)

Copyright HCC Embedded 2014

33

www.hcc-embedded.com

TINY File System User's Guide

f seek

Use this function to move the stream position in the target file. The file must be open.

Format

unsi gned char f_seek (

F_FILE * fil ehandl e,

| ong of f set,

| ong whence)
Arguments

Argument Description

filehandle Handle of the target file.
offset Relative byte position according to whence.
whence Where to calculate offset from:

® F_SEEK_CUR — Current position of file pointer.

® F_SEEK_END - End of file.
® F_SEEK_SET - Beginning of file.

Return values

Return value Description

F NOERR Successful execution.
Else See Error Codes.
Example

int nyreadfunc(char *filenane, char *buffer, |ong buffsize)
{
F_FILE *file=f_open(filenane,”"r");
f_read(buffer,1,1,file); /* read 1 byte */
f_seek(file, 0, SEEK_SET);
f_read(buffer,1,1,file); /*read the same 1 byte*/
f_seek(file,-1, SEEK END);
f_read(buffer,1,1,file); /* read last 1 byte */
f_close(file);
return O;

Type
F FILE *
long

long

Copyright HCC Embedded 2014 34

www.hcc-embedded.com

TINY File System User's Guide

f _rewind

Use this function to set the file position in the open target file to the start of the file.

Format

int f_rewind (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle Handle of target file. F_FILE *
Return values

Return value Description
F_NOERR Successful execution.

Else See Error Codes.

Example

voi d nyfunc()

{
char buffer[4];
char buffer2[4];
F_FILE *file=f_open("nyfile.bin","r");
if (file)
{
f_read(buffer,4,1,file);
f_rewind(file); /* rewind file pointer */
f_read(buffer2,4,1,file);
/* read from begi nning */
f_close(file);
}
return O;
}

Copyright HCC Embedded 2014 35 www.hcc-embedded.com

TINY File System User's Guide

f_ftruncate

Use this function to truncate a file which is open for writing to a specified length.
A file can only be truncated to a size less than or equal to its current size.

Format

int f_ftruncate (

F FILE * fil ehandl e,
unsi gned | ong length)
Arguments
Argument Description Type

filehandle The file handle of the open file. F FILE *

length The new length of the file. unsigned long

Return values

Return value Description
F_NOERR Successful execution.

Else See Error Codes.

Example

int nytruncatefunc(F_FILE *file, unsigned |ong |ength)

{
int ret=f_ftruncate(fil enane,|ength);
if (ret)
{
printf(“error:%l\n",ret);
}
el se
{
printf(“File is truncated to % bytes”, length);
}
return ret;
}

Copyright HCC Embedded 2014 36 www.hcc-embedded.com

TINY File System User's Guide

File Management

f delete

Use this function to delete a file.

Note: A read-only or open file cannot be deleted.

Format

int f_delete (const char * filenanme)

Arguments

Argument Description Type

filename Null-terminated string file name, with or without path, to be deleted. const char *
Return values

Return value Description

F NOERR Successful execution.
Else See Error Codes.
Example

voi d nyfunc(void)
{

f_delete (“oldfile.txt”);
f_delete (“Ai/subdir/oldfile.txt”);

Copyright HCC Embedded 2014 37 www.hcc-embedded.com

TINY File System User's Guide

f_findfirst

Use this function to find the first file or subdirectory in a specified directory.

First call f_findfirst() and then, if the file is found, get the next file with f_findnext(). Files with the system
attribute set will be ignored.

Note: If this function is called with "**" and it is not the root directory:

® The first entry found will be ".", the current directory.
® The second entry is “..”, the parent directory.

Format

int f_findfirst (
const char * fil enane,

F_FIND * find)
Arguments
Argument Description Type
filename Name of the file to find. const char *
find Where to store the find information. F_FIND *

Return values

Return value Description
F_NOERR Successful execution.

Else See Error Codes.

Copyright HCC Embedded 2014 38 www.hcc-embedded.com

TINY File System User's Guide

Example
void nydir()
{
F_FIND find;
if (Mf_findfirst("A/subdir/*.*" & ind))
{
do
{
printf (“filename:%”,find.filenane);
if (find.attr& ATTR DIR)
{
printf (“ directory\n”);
}
el se
{
printf (“ size %\n”,find.filesize);
}
} while (!'f_findnext(&find));
}
}

Copyright HCC Embedded 2014 39

www.hcc-embedded.com

TINY File System User's Guide

f_findnext

Use this function to find the next file or subdirectory in a specified directory after a previous call to
f findfirst() or f_findnext().

First call f_findfirst() and then, if a file is found, get the rest of the matching files by repeated calls to
f _findnext(). Files with the system attribute set will be ignored.

Note: If this function is called with "*.*" and it is not the root directory, the first file found will be ".." - the
parent directory.

Format

unsi gned char f_findnext (F_FIND * find)

Arguments
Argument Description Type
find Find information (from f_findfirst()). F_FIND *

Return values

Return value Description
F_NOERR Successful execution.

Else See Error Codes.

Copyright HCC Embedded 2014 40 www.hcc-embedded.com

TINY File System User's Guide

Example
void nydir()
{
F_FIND find;
if (Mf_findfirst("/subdir/*.*", & ind))
{
do
{
printf (“filename:%”,find.filenane);
if (find.attr& _ATTR DI R)
{
printf (“ directory\n”);
}
el se
{
printf (“ size %\n”,find.filesize);
}
}
while (!'f_findnext(&ind));
}
}

Copyright HCC Embedded 2014 41

www.hcc-embedded.com

TINY File System User's Guide

f_rename

Use this function to rename a file or directory.

If a file or directory is read-only it cannot be renamed. If a file is open it cannot be renamed.

Format

int f_rename (
const char * fil enane,
const char * newnane)

Arguments

Argument Description Type
filename Target file or directory name with/without path. const char *

newname New name of file or directory (without path). const char *

Return values

Return value Description
F_NOERR Successful execution.

Else See Error Codes.

Example

voi d nyfunc(voi d)

{
f_rename (“oldfile.txt”,"newfile.txt”);
f_rename (“A/subdir/oldfile.txt”,”newfile.txt”);
}
Copyright HCC Embedded 2014 42 www.hcc-embedded.com

TINY File System User's Guide

f_gettimedate

Use this function to get time and date information from a file or directory.
Date and Time Formats

The date and time fields are two 16 bit fields associated with each file/directory. If FAT compatibility is
required, these must use the standard type definitions for time and date given below. If FAT compatibility is
not required, you can use these fields as you require. See PSP Porting for information on porting.

The required format for the date for PC compatibility is a short integer ‘d’ (16 bit) such that:

Argument Valid values Format

Day 0-31 (d & 001fH)

Month 1-12 ((d & 01e0H) >> 5)
Years since 1980 0-119 ((d & feO0H) >> 9)

The required format for the time for PC compatibility is a short integer ‘t’ (16 bit) such that:

Argument Valid values Format

2 second increments 0-30 (t & 001fH)

Minute 0-59 ((t & 07e0H) >> 5)

Hour 0-23 ((t & f800H) >> 11)
Format

int f_gettimedate (
const char * fil enane,
unsi gned short * pcti ne,
unsi gned short * pcdate)

Arguments
Argument Description Type
filename Name of target file. const char *
pctime Where to store the creation time. unsigned short *
pcdate Where to store the creation date. unsigned short *

Copyright HCC Embedded 2014 43 www.hcc-embedded.com

TINY File System User's Guide

Return values

Return value Description

F NOERR Successful execution.
Else See Error Codes.
Example

voi d nyfunc(void)

{
unsi gned short t,d;
if (!f_gettinmedate(“subfolder”, &, &d))
{
unsi gned short sec=(t & 001fH << 1;
unsi gned short mnute=((t & 07e0H) >> 5);
unsi gned short hour=((t & 0f800H) >> 11);
unsi gned short day= (d & 001fH);
unsi gned short nonth= ((d & 0leOH) >> 5);
unsi gned short year=1980+ ((d & f800H) >> 9)
printf (“Time: %l: %: %", hour, m nut e, sec);
printf (“Date: %.%l. %", year, nont h, day);
}
el se
{
printf (“File tine cannot be retrieved!”
}
}

Copyright HCC Embedded 2014 44

www.hcc-embedded.com

TINY File System User's Guide

f_settimedate

Use this function to set the time and date on a file or on a directory.

Date and Time Formats

The date and time fields are two 16 bit fields associated with each file/directory. If FAT compatibility is
required, these must use the standard type definitions for time and date given below. If FAT compatibility is
not required, you can use these fields as you require. See PSP Porting for information on porting.

The required format for the date for PC compatibility is a short integer ‘d’ (16 bit), such that:

Argument Valid values Format

Day 0-31 (d & 001fH)

Month 1-12 ((d & 01e0H) >> 5)
Years since 1980 0-119 ((d & feO0H) >> 9)

The required format for the time for PC compatibility is a short integer ‘t’ (16 bit), such that:

Argument Valid values Format

2 second increments 0-30 (t & 001fH)

Minute 0-59 ((t & 07e0H) >> 5)

Hour 0-23 ((t & f800H) >> 11)
Format

int f_settimedate (
const char * fil enane,
unsi gned short pcti ne,
unsi gned short pcdate)

Arguments
Argument Description Type
filename The file or directory. char *
pctime Creation time of the file or directory. unsigned short
pcdate Creation date of the file or directory. unsigned short

Copyright HCC Embedded 2014 45 www.hcc-embedded.com

TINY File System User's Guide

Return values

Return value Description

F_NOERR Successful execution.

Else See Error Codes.

Example

voi d nyfunc(void)

/* 15:30:22 */

/* 2002.11. 03.

cdate);

{
unsi gned short ctinme, cdate;
ctime = (15<<11) +(30<<5) +(22>>1);
cdate = ((2002-1980) <<9) +(11<<5) +(3);
f_nkdir(“subfolder”); /* creating directory */
f_settinedate(“subfolder”, ctine,

}

Copyright HCC Embedded 2014

46

www.hcc-embedded.com

TINY File System User's Guide

f_filelength

Get the length of a file. If the file does not exist this function returns with zero.

Format

long f_filelength (const char * filenanme)

Arguments

Argument Description Type

filename Name of the target file, with or without the path. char *

Return Values

Return value Description
filelength Number of bytes in file.

F_ERR_INVALID File does not exist or volume is not working.

Example

int nyreadfunc(char *filenanme, char *buffer, unsigned |ong buffsize)

{
F_FILE *fil e=f_open(filename,”r");
unsi gned | ong size=f_filelength(filenane);

if (!file)
{
printf (“% Cannot be opened!”,fil enane);
return 1;
}
if (size>buffsize)
{
printf (“Not enough menory!”);
return 2;
}

f_read(buffer,size, 1,file);
f_close(file);
return O;

Copyright HCC Embedded 2014 a7

www.hcc-embedded.com

TINY File System User's Guide

f_getpermission

Use this function to retrieve the file or directory permission field associated with a file.

Every file/directory in the file system has an associated 32 bit field, known as the permission setting. Except
for the top 6 bits, this field is freely programmable by the developer and could, for instance, be used to
create a user access system. The first six bits are reserved for use by the system, as follows:

#def i ne FSSEC _ATTR_ARC (0x20UL<<(31-6))
#defi ne FSSEC _ATTR DI R (0x10UL<<(31-6))
#defi ne FSSEC_ATTR VOLUME (0x08UL<<(31-6))
#define FSSEC ATTR SYSTEM (0x04UL<<(31-6))
#define FSSEC ATTR HI DDEN (0x02UL<<(31-6))
#define FSSEC ATTR READONLY (0x01UL<<(31-6))

Format

int f_getpermssion (
const char * fil enane,
F_ATTR TYPE * attr)

Arguments
Argument Description Type
filename Target file. char *
attr Where to store the attribute. F_ATTR_TYPE *

Return values

Return value Description
F_NOERR Successful execution.

Else See Error Codes.

Copyright HCC Embedded 2014 48 www.hcc-embedded.com

TINY File System User's Guide

Example

voi d nyfunc(voi d)

{
unsi gned | ong secure;
if (!f_getperm ssion (“subfolder”, &ecure))
{
printf (“permssion is: %", secure);
}
el se
printf (“Perm ssion cannot be retrieved!”);
A

Copyright HCC Embedded 2014 49 www.hcc-embedded.com

TINY File System User's Guide

f_setpermission

Use this function to set the file or directory permission field associated with a file.

Every file/directory in the file system has an associated 32 bit field, known as the permission setting. Except
for the top six bits, this field is freely programmable by the user and could, for instance, be used to create a
user access system. The first six bits are reserved for use by the system, as follows:

#def i ne FSSEC _ATTR_ARC (0x20UL<<(31-6))
#defi ne FSSEC _ATTR DI R (0x10UL<<(31-6))
#defi ne FSSEC_ATTR VOLUME (0x08UL<<(31-6))
#define FSSEC ATTR SYSTEM (0x04UL<<(31-6))
#define FSSEC ATTR HI DDEN (0x02UL<<(31-6))
#define FSSEC ATTR READONLY (0x01UL<<(31-6))

Format

int f_setperm ssion (
const char * fil enane,
F_ATTR TYPE attr)

Arguments
Argument Description Type
filename The target file. char *
attr 32 bit number to associate with the filename. F_ATTR_TYPE

Return values

Return value Description
F_NOERR Successful execution.

Else See Error Codes.

Example

voi d nyfunc(voi d)

{
f _nmkdir (“subfol der”); /* creating directory */
f _setpernission (“subfol der”, 0x00f f 0000)

Copyright HCC Embedded 2014 50 www.hcc-embedded.com

TINY File System User's Guide

Power Management

Some flash devices can be put into ultra low power mode; these functions only have an effect if the flash
driver supports this feature. Typically any internal RAM buffer is lost while in low power mode.

The power management functions allow the developer to put the flash chip into an ultra low power mode
(and take it out of that mode) when it is known the system is going to be idle for a short while. Do not
over-use these functions because to restore the previous RAM buffer state typically requires a page to be
read.

Note: These functions are only available if the F LOW POWER option is enabled.

f enter_low_power

Use this function to enter low power mode.

Format

unsi gned char f_enter_| ow_power (void)

Arguments

Argument

None.
Return values

Return value Description
F_NOERR Successful execution.
F ERR_ACCESSDENIED Media does not support low power mode.

Else See Error Codes.

Example

f_enter_|l ow power (void)

Copyright HCC Embedded 2014 51 www.hcc-embedded.com

TINY File System User's Guide

f_exit_low_power

Use this function to leave low power mode.

Format

unsi gned char f_exit_l ow power (void)

Arguments

Argument

None.
Return values

Return value Description

F_NOERR Successful execution.

F_ERR_ACCESSDENIED Media does not support low power mode.

Else See Error Codes.

Example

f_exit_|l ow power (void)

Copyright HCC Embedded 2014 52

www.hcc-embedded.com

TINY

File System User's Guide

4.3 Error Codes

The table below lists the error codes generated by the API functions.

Error Code Value Meaning

F_NOERR 0
F_ERR_INVALIDVOLUME 1
F_ERR_INVALIDHANDLE 2
F_ERR_INVALIDOFFSET 3

F_ERR_INVALIDMODE 4

F_ERR_EOF 5
F_ERR_NOTFOUND 6
F_ERR_DIRFULL 7

F_ERR_INVALIDNAME 8

F_ERR_INVALIDDIR 9
F_ERR_OPEN 10
F_ERR_NOTOPEN 11

F_ERR_NOTFORMATTED 12
F_ERR_DIFFMEDIA 13

F_ERR_NOMOREENTRY 14

F_ERR_DUPLICATED 15
F_ERR_NOTEMPTY 16
F_ERR_INVALIDSIZE 17

F_ERR_ACCESSDENIED 18
F_ERR_BUSY 19
F_ERR_CORRUPTED 20
F_ERR_LOW_POWER 21
F_ERR_OS 22

F_ERROR 23

Function was successful.
No volume found.

Invalid file handle.
Invalid offset in file.
Invalid open mode.

End of file.

File not found.

Directory is full.

Invalid name.

Invalid directory.

File is already open.

File not opened, or opened in different mode.

Volume not formatted.

Invalid volume type.

No more entries available.
Duplicated file name.

Trying to remove a non-empty directory.
Buffer size too small (f_getcwd()).
Access is denied.

System busy, mutex get failure.
Corrupted file.

File system in low power mode.
OS error.

General error.

Copyright HCC Embedded 2014

53

www.hcc-embedded.com

TINY File System User's Guide

4.4 Types and Definitions

F_FILE: File Handle

The file handle, used as a reference for accessing files.

The handle is obtained when a file is opened and released when closed.

F_FIND Structure

The F_FIND structure takes this form:

Name Description Type

attr File attribute. F_ATTR

ctime Creation time. Unsigned short.
cdate Creation date. Unsigned short.

filesize Length of file. F_LENGTH_TYPE

The remainder of the structure is system-specific.

F _SPACE Structure

The F_SPACE structure takes this form:

Parameter Name Description Type
total Total size in bytes of the volume. F_LENGTH_TYPE
free Free bytes on the volume. F LENGTH_TYPE

Note: F_LENGTH_TYPE depends on the size of the flash.

Copyright HCC Embedded 2014 54 www.hcc-embedded.com

TINY File System User's Guide

5 Integration

TINY is designed to be as open and as portable as possible. No assumptions are made about the
functionality, the behavior, or even the existence, of the underlying operating system. For the system to work
at its best, perform the porting outlined below. This is a straightforward task for an experienced engineer.

5.1 OS Abstraction Layer (OAL)

All HCC modules use the OAL that allows the module to run seamlessly with a wide variety of RTOSes, or
without an RTOS.

The system uses the following OAL components:

OAL Resource Number Required
Tasks 0

Mutexes 1
(only if RTOS_SUPPORT is enabled).

Events 0

Copyright HCC Embedded 2014 55 www.hcc-embedded.com

TINY File System User's Guide

5.2 PSP Porting

The Platform Support Package (PSP) is designed to hold all platform-specific functionality, either because it
relies on specific features of a target system, or because this provides the most efficient or flexible solution
for the developer.

The TINY system makes use of the following standard PSP functions:

Function Package Element Description

psp_getcurrenttimedate() psp_base psp_rtc Returns the current time and date. This is used for
date and time-stamping files.

psp_memcpy() psp_base psp_string Copies a block of memory. The result is a binary
copy of the data.

psp_memmove() psp_base psp_string Moves a block of memory from one location to
another. The two areas of memory may overlap
without this causing problems as a temporary
intermediate array is used.

psp_memset() psp_base psp_string Sets the specified area of memory to the defined
value.

psp_strncat() psp_base psp_string Appends a string.

psp_strncmp() psp_base psp_string Compares two strings of defined length.

psp_strncpy() psp_base psp_string Copies one string of defined length to another.

psp_strnlen() psp_base psp_string Gets the length of a string.

The system does not make use of any standard PSP macros.

Copyright HCC Embedded 2014 56 www.hcc-embedded.com

	System Overview
	Introduction
	Feature Check
	Packages
	Documents
	Disclaimer
	About HCC Embedded
	Getting Help

	Source File List
	API Header File
	Configuration File
	TINY File System
	Driver Files

	Version File

	Configuration Options
	Summary
	Including and Excluding API Functions
	Other Build Options

	API
	Module Management
	f_init

	File System API
	Volume Management
	f_initvolume
	f_format
	f_getfreespace
	f_get_serial
	f_set_serial
	f_get_size

	Directory Management
	f_mkdir
	f_chdir
	f_rmdir
	f_getcwd

	File Access
	f_open
	f_close
	f_read
	f_write
	f_getc
	f_putc
	f_eof
	f_tell
	f_seek
	f_rewind
	f_ftruncate

	File Management
	f_delete
	f_findfirst
	f_findnext
	f_rename
	f_gettimedate
	f_settimedate
	f_filelength
	f_getpermission
	f_setpermission

	Power Management
	f_enter_low_power
	f_exit_low_power

	Error Codes
	Types and Definitions
	F_FILE: File Handle
	F_FIND Structure
	F_SPACE Structure

	Integration
	OS Abstraction Layer (OAL)
	PSP Porting

