
Copyright HCC Embedded 2020 1/41 www.hcc-embedded.com

SafeFLASH File
System NAND

Drive User Guide

Version 2.00

For use with SafeFLASH File System NAND Drive
Versions 2.03 and above

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 2/41 www.hcc-embedded.com

Table of Contents

1. System Overview 4 ..

1.1. Introduction 5 ..
1.2. Feature Check 7 ...
1.3. Packages and Documents 8 ..
1.4. Change History 10 ...

2. Source File List 11 ..

3. Configuration Option 13 ..

4. Introduction to NAND Flash 14 ...

5. System Features 16 ...

5.1. Other Media Types 16 ...
5.2. Maximum Number of Files 16 ...
5.3. Timeouts 17 ..
5.4. Write Cache 17 ...
5.5. Physical Device Usage 17 ...

Reserved Blocks 18 ..
File System Blocks 18 ..
Descriptor Blocks 19 ..

6. Application Programming Interface 20 ...

6.1. Management Functions 20 ...
fs_mount_nandflashdrive 21 ..
fs_getmem_nandflashdrive 22 ...

6.2. Physical Layer Functions 23 ...
fs_phy_nand_xxx 24 ...
ReadFlash 25 ...
WriteFlash 26 ...
EraseFlash 27 ...
VerifyFlash 28 ..
WriteVerifyPage 29 ..
CheckBadBlock 30 ...
GetBlockSignature 31 ..
BlockCopy 32 ...

6.3. Types and Definitions 33 ..
FS_FLASH Structure 33 ...

6.4. Error Codes 35 ...

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 3/41 www.hcc-embedded.com

6.5. Subroutine Descriptions and Notes for the Sample Driver 37

7. The Flash Driver Test Suite 39 ...

8. Integration 40 ...

8.1. PSP Porting 40 ...
9. Version 41 ..

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 4/41 www.hcc-embedded.com

1. System Overview
This chapter contains the fundamental information for this module.

The component sections are as follows:

Introduction – describes the main elements of the module.
Feature Check – summarizes the main features of the module as bullet points.
Packages and Documents – the Packages section lists the packages that you need in order to use
this module. The Documents section lists the relevant user guides.
Change History – lists the earlier versions of this manual, giving the software version that each
manual describes.

All rights reserved. This document and the associated software are the sole property of HCC
Embedded. Reproduction or duplication by any means of any portion of this document without the prior
written consent of HCC Embedded is expressly forbidden.
HCC Embedded reserves the right to make changes to this document and to the related software at
any time and without notice. The information in this document has been carefully checked for its
accuracy; however, HCC Embedded makes no warranty relating to the correctness of this document.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 5/41 www.hcc-embedded.com

1.1. Introduction
This guide is for those who wish to implement a NAND drive for HCC's SafeFLASH file system.

This diagram shows the structure of the file system software:

In this diagram:

The main SafeFLASH package provides the file API and intermediate file system. This is described in
the HCC SafeFLASH File System User Guide.
The NAND flash driver is the device driver. This guide shows how to add this to the build. Using the
available sample drivers as a model, you can create a driver that meets your specific needs.
The NAND physical handler performs the translation between the driver and the physical flash
hardware. Generally only the physical handler needs to be modified when the hardware
configuration changes (for example, a change to a different chip type, or use of 1/2/4 devices in
parallel).

https://doc.hcc-embedded.com/safeflash-file-system-user-guide

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 6/41 www.hcc-embedded.com

Note:

HCC Embedded has a range of physical handlers available to make the porting process as simple as
possible. HCC Embedded also offers special porting services when required.
HCC Embedded offers hardware and firmware development consultancy to assist developers with
the implementation of flash file systems.
The SafeFLASH file system was previously known as EFFS-STD. All references to STD in the code are
historical and refer to the file system’s original name.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 7/41 www.hcc-embedded.com

1.2. Feature Check
For a full list of SafeFlash features, see the HCC SafeFlash File System User Guide.

The system features which are especially relevant to NAND are as follows:

Supports all NAND flash types.
Supports MCU/NAND controllers.
Supports static and dynamic wear leveling.
Supports bad block management.
Supports the Error Correction Codes (ECC) algorithm.
Porting is easy for all known device types.
Provides a sample driver with a porting description.

https://doc.hcc-embedded.com/safeflash-file-system-user-guide

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 8/41 www.hcc-embedded.com

1.3. Packages and Documents

Packages
The table below lists the packages that you need in order to use this module and other packages that HCC
can provide:

Package Description

hcc_base_doc This contains the two guides that will help you get started.

fs_safe The SafeFLASH base package required by the NAND package.

fs_safe_nand The SafeFLASH NAND package described in this document.

fs_safe_nand_drv_sample Sample drivers available to help with development.

fs_safe_nand_drv_xxx Reference drivers available to help with development.

Documents
For an overview of HCC file systems and guidance on choosing a file system, refer to the Product
Information section of the main HCC website.

Readers should note the points in the HCC Documentation Guidelines on the HCC documentation website.

HCC Firmware Quick Start Guide

This document describes how to install packages provided by HCC in the target development environment.
Also follow the Quick Start Guide when HCC provides package updates.

HCC Source Tree Guide

This document describes the HCC source tree. It gives an overview of the system to make clear the logic
behind its organization.

HCC SafeFLASH File System User Guide

This document describes the base SafeFLASH System.

HCC SafeFLASH File System NAND Drive User Guide

This is this document.

https://www.hcc-embedded.com/embedded-systems-software-products/file-system/nand-nor-flash-file-systems
https://www.hcc-embedded.com/embedded-systems-software-products/file-system/nand-nor-flash-file-systems
https://doc.hcc-embedded.com/hcc-documentation/hcc-documentation-guidelines

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 9/41 www.hcc-embedded.com

Other HCC SafeFLASH Guides

These describe other SafeFLASH components:

HCC SafeFLASH File System RAM Drive User Guide – documents the SafeFLASH system for RAM.
HCC SafeFLASH File System NOR Drive User Guide – documents the SafeFLASH system for NOR
flash.
HCC SafeFLASH for Adesto DataFlash Drives User Guide – documents the SafeFLASH system for
Adesto® DataFlash.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 10/41 www.hcc-embedded.com

1.4. Change History
This section describes past changes to this manual.

To download this manual or a PDF describing an earlier software version, see File System PDFs.
For the history of changes made to the package code itself, see History: fs_safe_nand.

The current version of this manual is 2.00. The full list of versions is as follows:

Manual
version Date Software

version Reason for change

2.00 2020-01-31 2.05 New template.

1.60 2019-01-08 2.04 Added -1 return code to ReadFlash() function.

1.50 2018-02-15 2.03 Improved/corrected description of FS_FLASH structure.

1.40 2017-10-10 2.03 Change to fs_mount_nandflashdrive().

1.30 2017-08-30 2.02 Corrected Packages list.

1.20 2017-06-26 2.02 New Change History format.

1.10 2015-12-21 2.01 Added Fail-safety section.

1.00 2014-08-21 1.02 First online version.

https://doc.hcc-embedded.com/hcc-documentation/file-systems/file-system-pdfs#FileSystemPDFs-SafeFLASHFileSystemNANDDriveHCCSafeFLASHFileSystemNANDDriveUserGuide
https://doc.hcc-embedded.com/hcc-documentation/product-version-numbers-and-histories/history-fs-safe-nand

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 11/41 www.hcc-embedded.com

2. Source File List
This section describes all the source code files included in the system. These files follow the HCC
Embedded standard source tree system, described in the HCC Source Tree Guide. All references to file
pathnames refer to locations within this standard source tree, not within the package you initially receive.

Note: Do not modify any files except the configuration file.

API Header File
The file src/api/api_safe_nand.h is the only file that should be included by an application using this
module. For details of the API functions, see Application Programming Interface.

Configuration File
The file src/config/config_safe_nand.h contains the single configurable parameter. Configure this as
required. For details of the option, see Configuration Option.

Source Files
The NAND flash interface to the file system requires the following files. The two files shown below are in
src/safe-flash/nand:

File Short description Description

nflshdrv.c Device-independent flash
control layer.

This module provides a single clean interface between the
physical chip and the intermediate file system. This module
gets information about the configuration of the underlying
flash chip from the physical chip handler module and builds
a controller based on that information. This module also
performs the wear leveling control for the device.
Note: Normally this module does not require modification. If
modification is required, we strongly recommend that you
contact HCC Embedded about your requirements.

nflshdrv.h Header file. NAND flash driver header.

Physical Chip Handler
The physical chip handler module is located in the relevant sample driver folder in the
safe_nand_drv_sample package. These folders are in src/safe-flash/nand/phy/sample.

The module depends on the specific flash device and its configuration. Relevant data are the
manufacturer, chip size, number of interface bits (8, 16, or 32), and the number and arrangement of the
chips (parallel or serial). All of these factors influence the code in this module.

https://doc.hcc-embedded.com/source-tree-guide

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 12/41 www.hcc-embedded.com

Version File
The file src/version/ver_safe_nand.h contains the version number of this module. This version number is
checked by all modules that use this module to ensure system consistency over upgrades.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 13/41 www.hcc-embedded.com

3. Configuration Option
Set the single system configuration option in the file src/config/config_safe_nand.h.

FS_NAND_MAXFILE

The maximum number of files that can be open simultaneously. The default value is 4.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 14/41 www.hcc-embedded.com

4. Introduction to NAND Flash
SafeFLASH allows easy integration of all standard flash devices.

Two basic types of flash devices are generally available, NAND and NOR. These have quite distinct physical
characteristics and thus require quite different handling, but they do have the following basic properties in
common:

They are designed for non-volatile storage of code and data.
An area must be erased before it is written to. Erasing changes all erased bits to 1. Programming
consists of changing 1s to 0s. To change a 0 to a 1, an erase operation must be performed.
They are all divided into erase units (blocks). In order to erase any part, the whole block must be
erased.
Data areas wear out after a number of erase cycles. The guarantee for the number of successful
erase cycles varies among chip types. Therefore, it is important for any file system that uses flash to
manage the wearing of the flash. This is done by avoiding overuse of any one block.

This guide only covers NAND flash.

Features of NAND/AND Flash
NAND flash (also AND) is a newer flash chip technology than NOR. The primary difference is:

NAND can store approximately four times as much data as NOR flash for about the same price.
NAND has much faster erase and write times, so is a superior choice for applications that require
regular data storage.

However, there is a price to be paid for the improved performance:

Data cannot be accessed via a standard address/data bus. Instead commands must be sent to set
the address and the data can then be read/written sequentially.
Chips come from the factory with a number of bad blocks that can never be used.
Bits may flip unexpectedly (but this is handled; see below).

Because of these complications, NAND chips are designed with some additional features:

Each block is divided into a number of read/write pages (typically 512, 2048, or 4096 bytes in size).
Each page has an associated "spare" area that is used to store error correction and block
management information. If this area is used effectively, the general performance and reliability of
the devices is very high.

The NAND flash driver contains the necessary spare area management and fast Error Correction Codes
(ECC) algorithm.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 15/41 www.hcc-embedded.com

SLC and MLC NAND Flash
There are two categories of NAND flash:

Single Layer Cell (SLC) – generally characterized by having a typical reliable erase/write cycle count
of 100K or more, as long as an ECC which supports 1 bit error correction per 512 bytes of data is
used.
Multi Layer Cell (MLC) – generally characterized by having a typical reliable erase/write cycle count
of 5000, as long as an ECC which supports 3 bit error correction per 512 bytes of data is used.

In general:

With SLC flash hardware, support in the form of an integrated NAND flash controller on the
microprocessor can help to reduce the load on the CPU. External NAND flash controllers are also
available. HCC offers the logic for an external NAND flash controller, realized in VHDL, which is
suitable for use on many programmable logic type devices.
With MLC flash hardware, support is required because the resources required to run the ECC
operation are too high a burden on most embedded systems. Typically this hardware support
involves an integrated NAND flash controller on a microprocessor which supports MLC flash.

Because the ECC algorithm for SLC flash is much simpler, it can also be realized in software. Several
sample drivers that provide software ECC algorithms for SLC flash are supplied in the SafeFLASH package.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 16/41 www.hcc-embedded.com

5. System Features
This chapter covers the following:

Other Media Types – explains that any device that can emulate a logical block arrangement can be
used as a storage medium for SafeFLASH.
Maximum Number of Files – explains how the maximum number of file/directory entries that can be
made on a file system is calculated.
Timeouts – covers scheduling of other operations while waiting for flash operations to complete.
Write Cache – shows how to define a write cache for the driver.
Physical Device Usage – shows how to assign the three types of block to the device.

5.1. Other Media Types
The SafeFLASH design is based on the concept of a storage device with a logical block arrangement.
Because of this, any device that can emulate a logical block arrangement can be used as a storage
medium for SafeFLASH.

Note: SafeFLASH does not support removable media and is not recommended for arrays of flash
greater than 4GB. For removable media and very large arrays we recommend using the HCC FAT or
SafeFAT system, with SafeFTL where NAND flash is required.

5.2. Maximum Number of Files
The maximum number of file/directory entries that can be made on a file system is restricted. This number
may be calculated from the formula:

MaxNum Entries = (Descsize - (maxblock*((sectorperblock*2) + 6)))/32

So:

If more files are required (without using the separatedir setting in the FS_FLASH structure), either
increase the sector size (creating more space in the descriptor blocks), or choose a larger descriptor
block.
If fewer files are required, decrease the sector size or allocate smaller descriptor blocks.

If separatedir is used, the maximum number of file and directory entries is given by the formula:

MaxNum Entries = (Blocksize/32){}separatedir*

Note: If files with long filenames are used, the number of files that can be stored is reduced.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 17/41 www.hcc-embedded.com

5.3. Timeouts
Flash devices are normally controlled by hardware control signals. As a result there is no explicit need for
any timeouts to control exception conditions. However, some operations on flash devices are relatively
slow and it is often worth scheduling other operations while waiting for them to complete (for example, a
NAND flash erase takes two milliseconds).

5.4. Write Cache
You can define a write cache for the driver. Using the write cache means that in most cases only changes
to the descriptor block are stored in the flash device, thus improving the performance of the system (there
are fewer erases and writes), and reducing wear on the system.

To use the write cache, WriteVerifyPage() must be present. If this function does not exist, write caching
cannot proceed.

Additionally the following parameters in the FS_FLASH structure must be set up by using
fs_phy_nand_xxx():

Parameter Description

cachedpagesize This should be equal to the page size of the device.

cachedpagenum Number of pages in the cache, which must equal the number of pages in an erasable
block.

If either of these is set to zero, write caching is not used.

5.5. Physical Device Usage
You must make some decisions about how to use the flash device, and must be aware that:

All flash devices are divided into a set of erasable blocks.
You can only write to an erased location.
You cannot erase anything smaller than a block.

You can assign three types of block to the device:

Reserved blocks – for processes other than the file system; for example, booting.
File system blocks – for storing file information.
Descriptor blocks – to hold information about the structure of the file system, wear, and so on. By
using a minimum of two descriptor blocks (and management software) the system is made fail-safe.

The following sections describe how to assign these.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 18/41 www.hcc-embedded.com

Reserved Blocks

Blocks can be reserved for private usage without restriction. For example, if a particular physical device
has 1024 erasable blocks and you want to reserve 256 blocks from the beginning for private use, you
could use the fs_phy_nand_xxx() function to set the following values in the FS_FLASH structure:

maxblock (number of blocks for use by the file system) = 768
blockstart (first file storage block) = 256

Note: Do not access reserved blocks while the file system is accessing the device. Operations must be
performed atomically; that is, one command must be completed on the device before another starts.

FS_NAND_RESERVEDBLOCK Definition

The file system needs to have a reserve of several blocks to ensure its smooth operation for all
eventualities. Set this in the file nflshdrv.h. The default value is 12. It must be at least 3 plus the number
of separate directory blocks. Using a larger value than this is recommended to ensure that, if bad blocks
develop, others are available for use.

Note: At a certain point of usage all NAND blocks fail. Once the number of failed blocks becomes too
large to maintain a stable file system, the system returns F_ERR_UNUSABLE and becomes a read-only
file system.

File System Blocks

Allocate as many of these as required for file storage. Set the following parameters up by using
the fs_phy_nand_xxx() function to create an FS_FLASH structure:

maxblock

The number of erasable blocks available for file storage.

blocksize

The size of the blocks to be used in the file storage area. This must be an erasable unit of the flash chip. All
blocks in the file storage area must be the same size.

sectorsize

The sector size. Each block is divided (by 2^n) into a number of sectors. This number is the smallest
usable unit in the system and thus represents the minimum file storage area.

sectorperblock

The number of sectors in a block. It must always be true that:

sectorperblock * sectorsize = blocksize

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 19/41 www.hcc-embedded.com

blockstart

The logical number of the first block that may be used by the file system.

Descriptor Blocks

These blocks contain critical information about the file system: block allocation information, wear
information, and file/directory information. They are allocated automatically from the file system blocks.
Set the following parameters up by using the fs_phy_nand_xxx() function:

descsize

This is the size of a descriptor block. Since all blocks are the same size on NAND flash devices, this is the
same as the block size.

seperatedir

The maximum number of separate blocks that will be allocated for directory entries, a number ranging
from 0 to 4. If this is set to a non-zero value, the directory entries are given blocks that are separate from
the file system. This allows a much larger number of files to be stored in the file system.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 20/41 www.hcc-embedded.com

6. Application Programming Interface
This section documents the Application Programming Interface (API). It includes all the functions that are
available to an application program.

6.1. Management Functions
The functions are the following:

Function Description

fs_mount_nandflashdrive() Mounts a NAND flash drive.

fs_getmem_nandflashdrive() Returns the memory required for the driver in bytes.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 21/41 www.hcc-embedded.com

fs_mount_nandflashdrive

Use this function to mount a NAND flash drive.

Format

extern int fs_mount_nandflashdrive (
 void * vol_dsc,
 FS_PHYGETID phyfunc)

Arguments

Arguments Description Type

vol_dsc A pointer to the volume's volume descriptor. void *

phyfunc A pointer to a physical driver function for the desired device that is called
by the generic mount function to get information about how to use the
device.
See the HCC SafeFLASH File System User Guide for full details.

FS_PHYGETID

Return Values

Return value Description

0 Successful execution.

1 Operation failed.

https://doc.hcc-embedded.com/safeflash-file-system-user-guide

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 22/41 www.hcc-embedded.com

fs_getmem_nandflashdrive

Use this function to return the memory required for the driver in bytes.

Format

extern int fs_getmem_nandflashdrive (FS_PHYGETID phyfunc)

Arguments

Arguments Description Type

phyfunc A pointer to a physical driver function for the desired device that is called
by the generic mount function to get information about how to use the
device.
See the HCC SafeFLASH File System User Guide for full details.

FS_PHYGETID

Return Values

Return value Description

0 Operation failed. This may be because the flash could not be identified.

Else The memory required.

https://doc.hcc-embedded.com/safeflash-file-system-user-guide

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 23/41 www.hcc-embedded.com

6.2. Physical Layer Functions
The functions in this section provide the interface to the upper layer and must be ported to meet the
requirements of the particular flash devices that are used.

The fs_phy_nand_xxx() function is the key to understanding the interface between the specific physical
driver and the file system. This is the only public function in this module and it must be passed to the file
system's f_mountdrive() function to initialize the physical driver. The FS_FLASH structure returned by this
call contains all the configuration information about block usage required by the upper layers, as well as a
set of interface function pointers to the following NAND interface functions:

The other functions are the following:

Function Description

ReadFlash() Reads data from flash.

WriteFlash() Writes data to the flash device.

EraseFlash() Erases a block in flash.

VerifyFlash() Compares written data with the original. (Only required if verification is the
method of checking that the device was correctly written.)

WriteVerifyPage() Verifies that a page of data within the flash matches a buffer containing the
written data. (Only required if verification is the method of checking that the
device was correctly written.)

CheckBadBlock() Used at file system initialization to determine which blocks are bad.

GetBlockSignature() Gets the previously stored block signature data set by WriteFlash().

BlockCopy() Copies one block to another block. (Only use this if static wear leveling is used.)

All these functions require subroutine calls to do their work, as described in Subroutine Descriptions and
Notes for the Sample Driver.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 24/41 www.hcc-embedded.com

fs_phy_nand_xxx

Use this function to initialize the flash device and also to detect the flash type.

This function gives information to the upper layer about the number of blocks, block sizes, sector size,
cache size, and so on.

Note: This is the first call made by the upper layer. It is used to discover the flash device
configuration.

Format

int fs_phy_nand_xxx (FS_FLASH * flash)

Arguments

Argument Description Type

flash The flash structure that needs to be filled. FS_FLASH Structure *

Return values

Return value Description

0 Successful execution.

Else See Error Codes.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 25/41 www.hcc-embedded.com

ReadFlash

Use this function to read data from flash.

Format

int ReadFlash (
 void * data,
 long block,
 long blockrel,
 long datalen)

Arguments

Argument Description Type

data A pointer to the data storage area. void *

block The zero-based number of the block to read. long

blockrel The relative position in the block to start reading at. This can range from 0 to the
block size.

long

datalen The length of data to read. This is always less than block size and never extends
beyond a given block, even if blockrel points into the middle of the block.

long

Return values

Return value Description

-1 The page is in erased state.

0 Successful execution.

Else See Error Codes.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 26/41 www.hcc-embedded.com

WriteFlash

Use this function to write data to the flash device.

Format

int WriteFlash (
 void * data,
 long block,
 long relsector,
 long size,
 long signdata)

Arguments

Argument Description Type

data A pointer to the source data to be written. void *

block The zero-based number of the block to store data in. long

relsector The zero-based relative sector number in the block. long

size The length of data to be stored. long

signdata Block signature data. After this call, this can be obtained by using
GetBlockSignature().

long

Return values

Return value Description

0 Successful execution.

Else See Error Codes.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 27/41 www.hcc-embedded.com

EraseFlash

Use this function to erase a block in flash.

Format

int EraseFlash (long block)

Arguments

Argument Description Type

block The zero-based number of the block to erase. long

Return values

Return value Description

0 Successful execution.

Else See Error Codes.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 28/41 www.hcc-embedded.com

VerifyFlash

Use this function to compare written data with the original.

Call this after WriteFlash() to verify written data against the original data.

Note:

This is required only when verification is the desired method of ensuring that the device has been
correctly written.
To decide whether or not to use a verify function, refer to the device datasheet. If, for example, ECC
is being used and the guaranteed reliability is sufficient for your requirements, verification may be
omitted. This has a significant performance benefit.
To omit this function, set the VerifyFlash element of the FS_FLASH Structure structure to NULL when
you set it up in your driver initialization function.

Format

int VerifyFlash (
 void * data,
 long block,
 long relsector,
 long size,
 long signdata)

Arguments

Argument Description Type

data A pointer to the source data to be compared. void *

block The zero-based number of the block where data are stored. long

relsector The zero-based number of the relative sector in the block. long

size The length of data to compare. long

signdata Block signature data. long

Return values

Return value Description

0 Successful execution and no difference between flash and buffer content.

Else See Error Codes.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 29/41 www.hcc-embedded.com

WriteVerifyPage

Use this function to verify that a page of data within the flash matches a buffer containing the written data.

Call this function after the write caching mechanism writes a page of data to the flash.

Note:

This is required only when verification is the desired method of ensuring that the device has been
correctly written.
To decide whether or not to use a verify function, refer to the device datasheet. If, for example, ECC
is being used and the guaranteed reliability is sufficient for your requirements, verification may be
omitted. This has a significant performance benefit.
To omit this function, set the WriteVerifyPage element of the FS_FLASH Structure structure to NULL
when you set it up in your driver initialization function.

Format

int WriteVerifyPage (
 void * data,
 long block,
 long startpage,
 long pagenum,
 long signdata)

Arguments

Argument Description Type

data A pointer to the data to be written and verified. void *

block The number of the block to check. long

startpage The start page number in the block. long

pagenum The number of pages to be written. long

signdata The signature data for the block. After this call, this can be obtained by using
GetBlockSignature().

long

Return values

Return value Description

0 Successful execution.

Else See Error Codes.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 30/41 www.hcc-embedded.com

CheckBadBlock

Use this function at file system initialization to determine which blocks are bad.

If the flash device contains invalid blocks, this function registers these so that the file system does not use
them.

The higher level calls this function for all used blocks. The method used to check for bad blocks is device-
dependent.

Format

int CheckBadBlock (long block)

Arguments

Argument Description Type

block The number of the block to check. long

Return values

Return value Description

0 The block is useable.

1 The block is bad or non-valid.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 31/41 www.hcc-embedded.com

GetBlockSignature

Use this function to get the previously stored block signature data set by WriteFlash().

Format

long GetBlockSignature (long block)

Arguments

Argument Description Type

block The number of the target block. long

Return values

Return value Description

Value Signature data.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 32/41 www.hcc-embedded.com

BlockCopy

Use this function to copy one block to another block.

Note: Only use this function if static wear leveling is in use.

Implement this function to use any features of the target device that may be available to accelerate a
block-to-block copy operation. Many devices have features to support block copy. These help to reduce
CPU load and improve system performance.

Format

int BlockCopy (
 long destblock,
 long soublock)

Arguments

Argument Description Type

destblock The block number to copy to. long

soublock The block number to copy from. long

Return values

Return value Description

0 Successful execution.

Else See Error Codes.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 33/41 www.hcc-embedded.com

6.3. Types and Definitions
This section describes the FS_FLASH structure.

FS_FLASH Structure

This is the FS_FLASH structure that you must set up by using fs_phy_nand_xxx. For more details of the
block settings, see Physical Device Usage.

Element Type Description

maxblock long Maximum number of blocks that can be used.

blocksize long Block size in bytes.

sectorsize long Sector size to use.

sectorperblock long Sector/block (block size/sector size).

blockstart long The logical number of the first block in the created partition. This
number is returned by the driver at initialization. The driver must
choose how to map the logical block numbers it provides to the file
system to the physical blocks on the target flash.

descsize long Maximum size of descriptor: FAT+directory+block index.

descblockstart long Not used for NAND.

descblockend long Not used for NAND.

separatedir long Directories use separate block from FAT.

cacheddescsize long Not used for NAND.

cachedpagenum long Number of pages in cache.

cachedpagesize long Size of pages in cache.
Note that cachedpagenum * cachedpagesize = blocksize

ReadFlash FS_PHYREAD Read content function.

EraseFlash FS_PHYERASE Erase a block function.

WriteFlash FS_PHYWRITE Write content function.

VerifyFlash FS_PHYVERIFY Verify content function.

CheckBadBlock FS_PHYCHECK Check whether block is bad function.

GetBlockSignature FS_PHYSIGN Get block signature data function.

WriteVerifyPage FS_PHYCACHE Write and verify page function.

BlockCopy FS_PHYBLKCPY Accelerated block copy function.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 34/41 www.hcc-embedded.com

Element Type Description

chkeraseblk unsigned char * When the flash driver allows pre-erasing of blocks (that is,
performing erase operations while the system is less busy), the
driver must provide this buffer to the flash layer so that it can
check whether a block is ready to be erased.

erasedblk unsigned char * When the flash driver allows pre-erasing of blocks (that is,
performing erase operations while the system is less busy), the
driver must provide this buffer to the flash layer so that it can
check whether a block has already been erased.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 35/41 www.hcc-embedded.com

6.4. Error Codes
The table below lists all the error codes that may be generated by API calls to HCC’s file systems. Please
note that only a few of these error codes relate specifically to NAND flash.

Error Value Meaning

F_NO_ERROR 0 Successful execution.

F_ERR_INVALIDDRIVE 1 The specified drive does not exist.

F_ERR_NOTFORMATTED 2 The specified volume has not been formatted.

F_ERR_INVALIDDIR 3 The specified directory is invalid.

F_ERR_INVALIDNAME 4 The specified file name is invalid.

F_ERR_NOTFOUND 5 The file or directory could not be found.

F_ERR_DUPLICATED 6 The file or directory already exists.

F_ERR_NOMOREENTRY 7 The volume is full.

F_ERR_NOTOPEN 8 The file access function requires the file to be open.

F_ERR_EOF 9 End of file.

F_ERR_RESERVED 10 Not used.

F_ERR_NOTUSEABLE 11 Invalid parameters for f_seek().

F_ERR_LOCKED 12 The file has already been opened for writing/appending.

F_ERR_ACCESSDENIED 13 The necessary physical read and/or write functions are not
present for this volume.

F_ERR_NOTEMPTY 14 The directory to be moved or deleted is not empty.

F_ERR_INITFUNC 15 No init function is available for a driver, or the function generates
an error.

F_ERR_CARDREMOVED 16 The card has been removed.

F_ERR_ONDRIVE 17 Non-recoverable error on drive.

F_ERR_INVALIDSECTOR 18 A sector has developed an error.

F_ERR_READ 19 Error reading the volume.

F_ERR_WRITE 20 Error writing file to volume.

F_ERR_INVALIDMEDIA 21 Media not recognized.

F_ERR_BUSY 22 The caller could not obtain the semaphore within the expiry time.

F_ERR_WRITEPROTECT 23 The physical medium is write protected.

F_ERR_INVFATTYPE 24 The type of FAT is not recognized.

F_ERR_MEDIATOOSMALL 25 Media is too small for the format type requested.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 36/41 www.hcc-embedded.com

Error Value Meaning

F_ERR_MEDIATOOLARGE 26 Media is too large for the format type requested.

F_ERR_NOTSUPPSECTORSIZE 27 The sector size is not supported. The only supported sector size is
512 bytes.

F_ERR_UNKNOWN 28 An unspecified error has occurred.

F_ERR_DRVALREADYMNT 29 The drive is already mounted.

F_ERR_TOOLONGNAME 30 The name is too long.

F_ERR_NOTFORREAD 31 Not for read.

F_ERR_DELFUNC 32 The delete drive driver function failed.

F_ERR_ALLOCATION 33 psp_malloc() failed to allocate the required memory.

F_ERR_INVALIDPOS 34 An invalid position is selected.

F_ERR_NOMORETASK 35 All task entries are exhausted.

F_ERR_NOTAVAILABLE 36 The called function is not supported by the target volume.

F_ERR_TASKNOTFOUND 37 The caller’s task identifier was not registered. This is normally
because f_enterFS() has not been called.

F_ERR_UNUSABLE 38 The file system has become unusable. This is normally a result of
excessive error rates on the underlying media.

F_ERR_CRCERROR 39 A CRC error has been detected on the file.

F_ERR_CARDCHANGED 40 The card that was being accessed has been replaced with a
different card.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 37/41 www.hcc-embedded.com

6.5. Subroutine Descriptions and Notes for the Sample Driver
This section contains a complete list of subroutines, with descriptions of how to use them. Implementation
for a particular device may vary from that documented here.

NANDcmd(cmd: long)
This subroutine sends a command to NAND flash.

NANDaddr(addr: long)
This subroutine sends an address to NAND flash.

NANDwaitrb()
This subroutine waits until RB (ready/busy) goes high on NAND flash.

ReadPage(pagenum: long)
This subroutine sends a command sequence to read a page.

When using this:

Read the whole page of data and calculate the ECC.1.
Get the saved ECC from the NAND flash spare area.2.
If ECC calculation is needed, perform ECC checking.3.

WritePage(data: ptr, pagenum: long, size: long)
This subroutine copies original data into a temporary 32 bit aligned buffer.

When using this:

Send a command sequence for programming a page to NAND flash.1.
Program a whole page and calculate the ECC.2.
Write the ECC into the NAND flash spare area.3.
Check whether programming was successful; if not, return with an error.4.

ReadFlash(data: ptr, block: long, blockrel: long, datalen: long)
When using this subroutine:

Calculate pagenum.1.
Find the starting page from blockrel.2.
ReadPage(pagenum).3.
Check whether data need to be copied (for example, for alignment reasons) and, if required, copy4.
these.
ReadPage(pagenum) until datalen=0.5.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 38/41 www.hcc-embedded.com

EraseFlash(block: long)
When using this subroutine:

Calculate pagenum.1.
Send a command sequence to erase a block to NAND flash.2.
Wait until erasing is finished.3.
Check whether the erase was successful; if not, return with an error.4.

WriteFlash(data: ptr, block: long, relsector: long, len: long,
sdata: long)
When using this subroutine:

Calculate pagenum.1.
WritePage(pagenum++) until size=0 or any error.2.
Signal an error or return having written successfully.3.

VerifyFlash(data: ptr, block: long, relsector: long, len: long,
sdata: long)
When using this subroutine:

Calculate pagenum.1.
ReadPage(pagenum++) until len=0.2.
Compare pages with the original data; if there are any differences, return with an error.3.

CheckBadBlock(block: long)
Use this subroutine to determine whether or not the given block is bad. When using this:

Calculate pagenum.1.
Send a read spare area command to NAND flash.2.
Check the sixth word; if it is not 0xFFFFFFFF return with an error, otherwise return 0 (OK).3.

GetBlockSignature(block: long)
This subroutine reads signature data from a block.

fs_phy_nand_xxx (flash: struct)
Use this subroutine to set function pointers for the driver. When using this:

Get the device ID and manufacturer ID from NAND flash.1.
Compare all supported devices/manufacturers and fill the flash structure with corresponding data2.
(size, sectors, and block information).
If the device is not found, return with an error.3.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 39/41 www.hcc-embedded.com

7. The Flash Driver Test Suite
Use the test suite to exercise the flash drivers and ensure that everything works correctly. This code tests
your ported flash driver in isolation, to ensure that it is ported correctly and is stable.

The test program requires the functions defined and implemented (as samples) in the file testdrv_s.c.
This is part of the fs_safe base package and is located, with its header file testdrv_s.h, in the folder
fs_safe_xxx_xx/hcc/src/safe-flash/test.

Port these functions to your system. See the comments and simple code for reference.

To use the test program:

Include testdrv_s.c and testdrv_s.h in your test project.1.
Call the following to execute the test code:2.

void f_dotestdrv (FS_PHYGETID phyfunc)

Errors in the execution of this test indicate that there is an error in the implementation of the driver.
Contact support@hcc-embedded.com if you need further advice.

mailto:support@hcc-embedded.com

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 40/41 www.hcc-embedded.com

8. Integration
This section describes all aspects of the module that require integration with your target project. This
includes porting and configuration of external resources.

8.1. PSP Porting
The Platform Support Package (PSP) is designed to hold all platform-specific functionality, either because it
relies on specific features of a target system, or because this provides the most efficient or flexible
solution for the developer. For full details of its functions and macros, see the HCC Base Platform Support
Package User Guide.

The module makes use of the following standard PSP function:

Function Package Element Description

psp_memset() psp_base psp_string Sets the specified area of memory to the defined value.

SafeFLASH File System NAND Drive User Guide

Copyright HCC Embedded 2020 41/41 www.hcc-embedded.com

9. Version
Version 2.00

For use with SafeFLASH File System NAND Drive Versions 2.03 and above

	Table of Contents
	1. System Overview
	1.1. Introduction
	1.2. Feature Check
	1.3. Packages and Documents
	1.4. Change History

	2. Source File List
	3. Configuration Option
	4. Introduction to NAND Flash
	5. System Features
	5.1. Other Media Types
	5.2. Maximum Number of Files
	5.3. Timeouts
	5.4. Write Cache
	5.5. Physical Device Usage
	Reserved Blocks
	File System Blocks
	Descriptor Blocks

	6. Application Programming Interface
	6.1. Management Functions
	fs_mount_nandflashdrive
	fs_getmem_nandflashdrive

	6.2. Physical Layer Functions
	fs_phy_nand_xxx
	ReadFlash
	WriteFlash
	EraseFlash
	VerifyFlash
	WriteVerifyPage
	CheckBadBlock
	GetBlockSignature
	BlockCopy

	6.3. Types and Definitions
	FS_FLASH Structure

	6.4. Error Codes
	6.5. Subroutine Descriptions and Notes for the Sample Driver

	7. The Flash Driver Test Suite
	8. Integration
	8.1. PSP Porting

	9. Version

