
USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 1 www.hcc-embedded.com

USB Device Low Level

Driver Interface

Specification

Version 3.00

For use with USB Device Base System versions 3.14

and above

Date: 24-Oct-2014 18:24

All rights reserved. This document and the associated software are the sole property of HCC

Embedded. Reproduction or duplication by any means of any portion of this document without the

prior written consent of HCC Embedded is expressly forbidden.

HCC Embedded reserves the right to make changes to this document and to the related software at

any time and without notice. The information in this document has been carefully checked for its

accuracy; however, HCC Embedded makes no warranty relating to the correctness of this document.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 2 www.hcc-embedded.com

Table of Contents

System Overview __ 4

Introduction ___ 4

Packages and Documents __ 5

Packages __ 5

Documents __ 5

Driver Operation ___ 6

Low Level Driver Components __ 6

Bus Event Monitor ___ 6

EP0 Receive Handler __ 7

EP Receive/Transmit Handler __ 7

SOF Interrupt Handler (optional) __ 7

SOF Callback Table ___ 7

Non-isochronous Endpoint Communication __ 8

Isochronous Endpoint Communication __ 8

Driver Configuration ___ 9

Endpoint Information Management __ 10

API __ 11

Module Management ___ 11

usbd_hw_init __ 11

usbd_hw_start ___ 12

usbd_hw_stop ___ 13

usbd_hw_delete ___ 14

Driver Management __ 15

usbd_add_ep __ 15

usbd_remove_ep ___ 16

usbd_send __ 17

usbd_receive __ 18

usbd_add_fifo ___ 19

usbd_drop_fifo ___ 20

usbd_at_high_speed __ 21

usbd_get_stall ___ 22

usbd_set_stall ___ 23

usbd_clr_stall ___ 24

usbd_get_state __ 25

usbd_set_addr_post __ 26

usbd_set_addr_pre ___ 27

usbd_set_cfg_post ___ 28

usbd_set_cfg_pre __ 29

usbd_set_testmode ___ 30

Callback Functions __ 31

usbd_pup_on_off ___ 31

usbd_is_self_powered ___ 32

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 3 www.hcc-embedded.com

usbd_conn_state ___ 33

usbd_vbus __ 34

Error Codes __ 35

Types and Definitions __ 36

usbd_iso_buffer_t __ 36

USB Driver State Values ___ 36

USB Transfer State Values ___ 36

Test Modes ___ 37

Events ___ 37

Endpoint Attributes ___ 37

Integration ___ 38

OS Abstraction Layer (OAL) ___ 38

PSP Porting __ 38

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 4 www.hcc-embedded.com

1 System Overview

1.1 Introduction

This guide is for those who want to implement a low level driver for HCC's Embedded USB Device (EUSBD)

stack. There is no standard for implementing USB device interfaces and every USB device implementation is

different. This document describes the low level driver interface that a driver for a USB device controller

must provide to interoperate correctly with HCC's EUSBD stack.

Note: Users of the EUSBD system who are not implementing a low level driver should have no need to

use or understand this document. If you do experience problems with the low level driver provided,

please contact .support@hcc-embedded.com

This diagram shows the relationships between the main elements of the EUSBD stack:

A driver must be written specifically for a particular USB device controller. Each implementation is designed

to work with the USB device core (the base system).

Note: Any engineer implementing a new low level driver should have a reasonable knowledge of the

USB protocol, should understand the EUSBD system, and should be familiar with this document. In

addition, a thorough understanding of the USB device controller is essential.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 5 www.hcc-embedded.com

Note: We recommend contacting HCC before implementing a new driver. HCC can provide a tested

driver for your target device, or at least one that is similar to it. HCC has developed low level drivers for

many devices. It is unusual to find a USB device that HCC does not have experience with.

1.2 Packages and Documents

Packages

The following table lists the packages that you need in order to use this module.

Package Description

hcc_base_doc This contains the two guides that will help you get started.

usbd_base The USB Device base package which includes the low level driver code.

The USB Device Descriptor Generator is in the directory .hcc/util/configtool

Documents

Readers should note the points in the on the HCC documentation website.HCC Documentation Guidelines

HCC Firmware Quick Start Guide

This document describes how to install packages provided by HCC in the target development environment.

Also follow the when HCC provides package updates.Quick Start Guide

HCC Source Tree Guide

This document describes the HCC source tree. It gives an overview of the system to make clear the logic

behind its organization.

HCC Embedded USB Device Base System User's Guide

This document describes the Embedded USB Device base system.

HCC USB Device Low Level Driver Interface Specification

This is this document.

http://doc.hcc-embedded.com/display/ZenRoot/HCC+Documentation+Guidelines

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 6 www.hcc-embedded.com

2 Driver Operation
The diagram below shows the whole EUSBD system. The components which are optional are shown with

dotted borders. This document covers the low level driver and, in particular, the interface it provides to the

rest of the EUSBD system.

2.1 Low Level Driver Components

Bus Event Monitor

The driver stack sets the if the status of the USB bus changes. The possible stateusbd_bus_event

changes are:

USB suspended.

USB wakeup.

USB reset.

Note: In the suspended state the hardware may draw only limited current from the USB bus. Please

refer to the Universal Serial Bus specification for full details.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 7 www.hcc-embedded.com

EP0 Receive Handler

Endpoint 0 (referred to as "EP0") on a USB interface has special significance. The host sends packets

known as "setup packets" (STPs) to this endpoint for configuration and control purposes. A setup packet

requires special processing because there are timing constraints on the handling of certain types of STPs.

For each setup packet received on EP0, an event is sent to the EP0 task (see Non-isochronous Endpoint

).Communication

EP Receive/Transmit Handler

Data is transferred in blocks over bulk, interrupt, or control endpoints. Latency is not the most important

factor when using this transfer type. Any delay during the transfer is handled using flow control on the USB

bus.

All such USB transfers are described by a transfer descriptor). Transfer descriptors are(usbd_transfer_t

allocated by the class driver. After the transfer descriptor is filled, it is passed to if theusbd_transfer()

transfer should not be blocked, or to if it should be blockedusbd_transfer_b() .

If the transfer is blocking, the call returns only when the transfer finishes successfully or returns an error.

If the transfer is non-blocking, the application must call periodically to allocate CPUusbd_transfer_status()

time to transfer management, and to check the status of the transfer.

SOF Interrupt Handler (optional)

Implementation of this handler is optional. For most USB device controllers it is possible to get an interrupt

every time a Start Of Frame (SOF) packet is received by the device. On a full speed bus the period is 1ms,

on a high speed bus the period is 125µs.

Each time the SOF interrupt occurs, all the callback functions in the SOF callback table (see below) are

executed. Note that these functions are called directly from the interrupt, so they are executed in the

interrupt context.

There are three types of communication between the low level driver and the EUSBD stack, as follows:

Non-isochronous endpoint communication.

Isochronous endpoint communication.

Bus event communication.

SOF Callback Table

The SOF callback table is a table of callback functions registered using functions defined in the HCC

. Callback functions registered in this table define aEmbedded USB Device Base System User's Guide

period. If this period elapses, the callback becomes due. Due times are recalculated each time an SOF

interrupt is generated. Note that, since these functions are called directly from the interrupt, they are

executed in the interrupt context.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 8 www.hcc-embedded.com

2.2 Non-isochronous Endpoint Communication

The base system, the USB driver common code, uses the transfer descriptor to tell the lowusbd_transfer_t

level driver the details of the transfer. This structure is passed to or , whichusbd_send() usbd_receive()

configures the endpoint according to the content of the structure.

Control endpoints need special handling. The stack supports only one control endpoint, EP0. EP0 must be

created by the low level driver when is called. EP0 must always be in a state in which itusbd_hw_start()

can receive the next setup packet. Thus, event generation for the reception of a setup packet must always

be active. Also the USBDHW must always be able to receive an early handshake to abort an ongoing IN

transfer.

The low level driver uses the and members to ask the baseusbd_transfer_t::state usbd_transfer_t::event

system to perform processing. When a transfer needs a status update (because an error occurred or the last

chunk of data has been received or sent), it sets the state and, if the event field is not NULL, it calls

 on it.os_event_set_int()

The is set as follows:transfer state

Transfer state Description

USBDTRST_BUSY Transfer of current chunk is ongoing. This state is set by or usbd_receive()

 if the current transfer needs no processing by the base system.usbd_send()

This can be difficult when performing a transfer on a double buffered OUT

endpoint as there is a race condition between and the interruptusbd_receive()

handler. Both will update .usbd_transfer_t::state

If the changes the state to busy after the reception on theusbd_receive()

second buffer triggers the interrupt, but before this event is processed by the

base system, the state freezes to busy.

USBDTRST_CHK Chunk finished successfully and did not end with a short packet.

USBDTRST_SHORTPK Chunk finished successfully and ended with a short packet.

USBDTRST_COMM Chunk finished with an error.

2.3 Isochronous Endpoint Communication

Each isochronous endpoint has a FIFO attached to it by the class driver. The class driver has to call

 from the class driver callback function. This function is executed before the handshakeusbd_fifo_attach()

phase is performed for a or request. Thus the host is not allowed to performset configuration set interface

any transactions to the isochronous endpoint before the FIFO is attached.

The low level driver implements callback functions for the FIFO. OUT endpoints use the IN callback and IN

endpoints use the OUT callback. The low level driver enables/disables event generation of the endpoint,

based on its FIFO status.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 9 www.hcc-embedded.com

2.4 Driver Configuration

In most cases a low level driver can work with multiple chips. Sometimes there are small differences

between the supported chips that affect the low level driver. These include the number of endpoints, the

maximum packet size for endpoints, and pull-up control. These parameters are captured in a header file.

The main part of the name of this file ends with "cfg" or "config" (for example, or usbd_sam_config.h

).usbd_sam_cfg.h

Sometimes the initialization of different chips needs to differ. Such differences are captured to functions in a

 file. Again the main part of the file name ends with " " or " ." Usually function calls for initialize and.c config cfg

delete suffice. These can handle GPIO or clock initialization differences.

The base system makes the following configuration parameters public:

Parameter Description

USBD_SOFTMR_SUPPORT If the value is non-zero, the application needs the SOF timer. The

low level driver enables SOF interrupts and calls softmr_tick()

when the interrupt strikes.

USBD_ISOCHRONOUS_SUPPORT If the value is non-zero, the low level driver enables FIFO handling

routines (the and functions,usbd_add_fifo() usbd_drop_fifo()

FIFO callbacks, and FIFO-specific handing in the interrupt handler).

USBD_REMOTE_WAKEUP If the value is non-zero, remote wakeup is supported by the device.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 10 www.hcc-embedded.com

2.5 Endpoint Information Management

The base system is responsible for managing endpoint information. It manages a structure array called

. Each item in the array holds information about an endpoint.usbd_ep_list

Each structure in the array has the following members:

Member Description

usbd_transfer_t *tr The transfer ongoing on the endpoint. This field is read-only for the low level driver.

struct

usbd_ep_info_s

*next

A pointer to the next endpoint of the same interface. This is only used by the base

system.

rngbuf_t *fifo Available only if the endpoint type is isochronous. The FIFO is attached to the

endpoint. If no FIFO is attached the value is NULL. This field is read-only for the low

level driver.

usbd_ep_handle_t

eph

The handle for this endpoint. This is the "up-to-date" value changed by the

 and functions in the base system. This is notusbd_add_ep() usbd_remove_ep()

used by the low level driver.

usbd_hw_ep_info_t

hw_info

The layout of this structure is defined by the low level driver. This is a good place to

store hardware-specific information related to an endpoint. For example, information

about the double buffering state and the physical endpoint index can be stored here.

uint16_t psize The packet size used for the endpoint. This field is read-only for the low level driver.

 ep_typeuint8_t The endpoint type (see the values). This field is read-only for theEPD_ATTR_XXX

low level driver.

 addr uint8_t The address of the endpoint. This field is read-only for the low level driver.

 ageuint8_t The age of the endpoint. This is only used by the base system.

 halteduint8_t A flag used to record whether the endpoint is halted or not. This is only used by the

base system.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 11 www.hcc-embedded.com

3 API
This section documents the Application Programming Interface (API). It describes all the functions that must

be provided by the low level driver for the EUSBD stack to operate correctly.

3.1 Module Management

usbd_hw_init

Use this function to initialize the low level driver and hardware for operation.

Typically this function performs clock initialization and resource allocation for the USB hardware interface. It

does not enable operation of the driver.

Note: The definition of the structure is target-specific and it may be a dummyusbd_hw_init_info_t

structure. It is used to give systems flexibility in system configuration.

Format

int usbd_hw_init (void)

Arguments

Argument

None.

Return Values

Return value Description

USBD_SUCCESS Successful operation.

USBD_ERROR Operation failed.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 12 www.hcc-embedded.com

usbd_hw_start

Use this function to start the low level driver.

This function typically activates the pull-up resistor and enables USB interrupts.

Note: You must call before this function.usbd_hw_init()

Format

int usbd_hw_start (void)

Arguments

Argument

None.

Return Values

Return value Description

USBD_SUCCESS Successful operation.

USBD_ERROR Operation failed.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 13 www.hcc-embedded.com

usbd_hw_stop

Use this function to stop the low level driver.

This function typically disables USB interrupts and disconnects the pull-up resistor to signal to the host that

the USB device is not available. It reverses the operations performed by . usbd_hw_start()

Format

int usbd_hw_stop (void)

Arguments

Argument

None.

Return Values

Return value Description

USBD_SUCCESS Successful operation.

USBD_ERROR Operation failed.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 14 www.hcc-embedded.com

usbd_hw_delete

Use this function to release resources allocated for the USB hardware interface.

This function can also include code to put the hardware into low power mode. It typically reverses the

operations performed by . usbd_hw_init()

Format

int usbd_hw_delete (void)

Arguments

Argument

None.

Return Values

Return value Description

USBD_SUCCESS Successful operation.

USBD_ERROR Operation failed.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 15 www.hcc-embedded.com

3.2 Driver Management

usbd_add_ep

Use this function to configure a new endpoint.

Properties of the endpoint (packet size, type, direction, and so on) can be found in the array,usbd_ep_list

selected by index. This array has a structure of the type . This type is defined by the lowusbd_hw_ep_info_t

level driver in the file . This structure can be used to hold hardware-specific information onusbd_dev.h

endpoints.

Format

int usbd_add_ep (int index)

Arguments

Argument Description Type

index The index of the endpoint to add. int

Return Values

Return value Description

USBD_SUCCESS Operation successful.

USBD_ERROR Operation failed.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 16 www.hcc-embedded.com

usbd_remove_ep

Use this function to disable an endpoint.

This removes the specified endpoint from the array.usbd_ep_list

Format

void usbd_remove_ep (int index)

Arguments

Argument Description Type

index The index of the endpoint to disable. int

Return Values

Return value

None.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 17 www.hcc-embedded.com

usbd_send

Use this function to send data.

This function should set the () to USBDTRST_BUSY.transfer state tr->state

This function initiates the requested transfer. After this it is the responsibility of the low level driver to send

the requested data in one or more USB data packets, maintaining the transfer until it is completed or fails.

The low level driver must:

Read the data from the buffer passed to it () and send it as it can. The total length of thetr->buffer

data to send is given in .tr->length

Maintain the counter of the number of bytes successfully transmitted in the transfer descriptor. This is

.tr->csize

If the transfer is not completed by the sending of a short packet, when the transfer is completed set

the state of the transfer to USBDTRST_CHK and send an event.

If the transfer is completed by the sending of a short packet, set the state of the transfer to

USBDTRST_SHORTPK and send an event.

Format

int usbd_send (usbd_transfer_t * tr)

Arguments

Argument Description Type

tr Transfer descriptor holding detailed information about the transfer. usbd_transfer_t *

Return Values

Return value Description

USBDERR_NONE Operation successful.

USBDERR_COMM Communication error.

USBDERR_BUSY Endpoint is busy.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 18 www.hcc-embedded.com

usbd_receive

Use this function to receive data.

This function should set the () to USBDTRST_BUSY. The transfer is completed whentransfer state tr->state

either the total number of bytes requested in the transfer has been received, or when a packet smaller than

the USB packet size (a) is received.short packet

This function initiates the requested transfer and it is then the responsibility of the low level driver to receive

the requested data in one or more USB data packets, maintaining the transfer until it is completed or fails.

The driver must:

Copy received data into the buffer passed to it () as it receives it. The maximum length of thetr->buffer

data to be received is given in .tr->length

Maintain the counter of the number of bytes successfully received in the transfer descriptor. This is

.tr->csize

If the transfer is not completed by the reception of a short packet, when the transfer is completed set

the state of the transfer to USBDTRST_CHK and send an event.

If the transfer is completed by the reception of a short packet, set the state of the transfer to

USBDTRST_SHORTPK and send an event.

Format

int usbd_receive (usbd_transfer_t * tr)

Arguments

Argument Description Type

tr Transfer descriptor holding detailed information about the transfer. usbd_transfer_t *

Values

Return value Description

USBDERR_NONE Operation successful.

USBDERR_COMM Communication error.

USBDERR_BUSY Endpoint is busy.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 19 www.hcc-embedded.com

usbd_add_fifo

Use this function to attach a FIFO to the specified isochronous endpoint.

Note: This function is used only by .isochronous endpoints

When is called, the FIFO is not yet available. The FIFO is attached later by the class driver.usbd_add_ep()

This function is called when the host configures the device using a "set configuration" or "set interface"

request. The handshake for these requests is sent only after this call finishes; this ensures that the host

cannot use the endpoint before the FIFO is attached.

This call sets callback routines for the FIFO. For OUT endpoints set the IN callback. For IN endpoints set the

OUT callback.

The "fifo" member of the item is set by the base system.usbd_ep_list

Format

int usbd_add_fifo (int index)

Arguments

Argument Description Type

index The index of the endpoint to assign the FIFO to. int

Return Values

Return value Description

USBD_SUCCESS Operation successful.

USBD_ERROR Operation failed.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 20 www.hcc-embedded.com

usbd_drop_fifo

Use this function to detach a FIFO from the specified isochronous endpoint.

Note: This function is used only by .isochronous endpoints

The "fifo" member of the item is cleared by the base system.usbd_ep_list

Format

int usbd_drop_fifo (int index)

Arguments

Argument Description Type

index The index of the endpoint to drop the FIFO from. int

Return Values

Return value Description

USBD_SUCCESS Operation successful.

USBD_ERROR Operation failed.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 21 www.hcc-embedded.com

usbd_at_high_speed

Use this function to find whether the hardware is communicating at high speed (480Mb/s).

Format

int usbd_at_high_speed (void)

Arguments

Argument

None.

Return Values

Return value Description

Zero The device is not operating at high speed.

Non-zero The device is operating at high speed.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 22 www.hcc-embedded.com

usbd_get_stall

Use this function to find whether the specified endpoint is currently stalled.

An endpoint is said to be stalled if the USB device controller is sending stall handshakes in response to any

request for that endpoint.

Note: This function must be used for control, interrupt, and bulk endpoints.

Format

int usbd_get_stall (int index)

Arguments

Argument Description Type

index The index of the endpoint in .usbd_ep_list int

Return Values

Return value Description

Zero The endpoint is not stalled.

Non-zero. The endpoint is stalled.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 23 www.hcc-embedded.com

usbd_set_stall

Use this function to set the specified endpoint to send stall handshakes.

Note: This must be implemented for control, interrupt, and bulk endpoints.

The stall flag is provided by USB controllers on a per-endpoint basis. For control endpoints, the next setup

packet must clear this flag.

Format

void usbd_set_stall (int index)

Arguments

Argument Description Type

index The index of the endpoint in .usbd_ep_list int

Return Values

Return value

None.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 24 www.hcc-embedded.com

usbd_clr_stall

Use this function to clear the stall flag for the specified endpoint.

Note: This must be implemented for control, interrupt, and bulk endpoints.

The stall flag is provided by USB controllers on a per-endpoint basis. For control endpoints, the next setup

packet must clear this flag.

Format

void usbd_clr_stall (int index)

Arguments

Argument Description Type

index The index of the endpoint in .usbd_ep_list int

Return Values

Return value

None.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 25 www.hcc-embedded.com

usbd_get_state

Use this function to get the current driver state.

Format

int usbd_get_state (void)

Arguments

Argument

None.

Return Values

Return value

A value.USBDST_XXX

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 26 www.hcc-embedded.com

usbd_set_addr_post

This function is called by the base system when the device receives a "set address" request.

The call is made after the handshake has been sent back to the host. If the hardware module can only

change the address after the handshake is sent, use this function to change the device address.

Format

void usbd_set_addr_post (uint8_t daddr)

Arguments

Argument Description Type

daddr The new device address. uint8_t

Return Values

Return value

None.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 27 www.hcc-embedded.com

usbd_set_addr_pre

This function is called by the base system when the device receives a "set address" request.

This function is called immediately after the setup packet has been processed and before the handshake is

sent back. If the target hardware module can only change the address after the handshake is sent, use this

function to set the device address.

Format

void usbd_set_addr_pre (uint8_t daddr)

Arguments

Argument Description Type

daddr The new device address. uint8_t

Return Values

Return value

None.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 28 www.hcc-embedded.com

usbd_set_cfg_post

This function is called by the base system when the device receives a "set address" request.

The call is made after the handshake has been sent back to the host. If the hardware module can only

change the address after the handshake is sent, use this function to change the device address.

Format

void usbd_set_cfg_post (void)

Arguments

Argument

None.

Return Values

Return value

None.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 29 www.hcc-embedded.com

usbd_set_cfg_pre

This function is called by the base system when the device receives a "set address" request.

The call is made after the handshake has been sent back to the host. If the hardware module can only

change the address after the handshake is sent, use this function to change the device address.

Format

void usbd_set_cfg_pre (void)

Arguments

Argument

None.

Return Values

Return value

None.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 30 www.hcc-embedded.com

usbd_set_testmode

Use this function to specify the test mode.

Note: This is only useful if USBD_TEST_MODE_SUPPORT is enabled in .src/config/config_usbd.h

Format

void usbd_set_testmode (uint8_t testmode_selector)

Arguments

Argument Description Type

testmode_selector The .test mode uint8_t

Return Values

Return value

None.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 31 www.hcc-embedded.com

3.3 Callback Functions

This section describes the callback functions that the driver uses to indicate specified events to the USBD

stack.

Note: It is the user's responsibility to provide these functions.

usbd_pup_on_off

The low level driver calls this callback function to enable or disable the pull-up resistor.

This function is needed only if the USB hardware has no on-chip pull-up resistor. It is called by the low level

driver and implemented by the application.

Format

int usbd_pup_on_off (int on)

Arguments

Argument Description Type

on One of the following:

Non-zero to activate the pull-up resistor.

Zero to deactivate it.

int

Return Values

Return value Description

Zero Successful execution.

Non-zero Operation failed.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 32 www.hcc-embedded.com

usbd_is_self_powered

The low level driver calls this callback function to find whether the device is currently running self-powered.

If a device is not self-powered, it is powered from the USB.

Format

int usbd_is_self_powered (void)

Arguments

Argument

None.

Return Values

Return value Description

Zero The device is bus-powered.

1 The device is self-powered.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 33 www.hcc-embedded.com

usbd_conn_state

The low level driver calls this callback function to find the current device state.

Format

void usbd_conn_state (usbd_conn_state_t new_state)

Arguments

Argument Description Type

new_state One of the following:

Non-zero to activate self-powered mode.

Zero to activate bus-powered mode.

usbd_conn_state_t

Return Values

Return value

None.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 34 www.hcc-embedded.com

usbd_vbus

This callback function reports the current V state to the USB stack.BUS

It is a requirement of USB to remove the pull-up resistor when V is off (and the device is connected toBUS

the host), so the system needs to tell the stack when to complete the required actions. If the low level driver

has no V handling, call this function when the V is detected or removed. Otherwise this function isBUS BUS

not needed.

Format

void usbd_vbus (

 int on,

 int in_irq_context)

Arguments

Argument Description Type

on One of the following:

Non-zero when V is detected.BUS

Zero when V is removed.BUS

int

in_irq_context Set this to 1 if this is called from an interrupt. int

Return Values

Return value

None.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 35 www.hcc-embedded.com

3.4 Error Codes

If a function executes successfully it returns with USBD_SUCCESS, a value of zero.

Argument Description Type

USBD_SUCCESS 0 Operation successful.

USBDERR_NONE 0 No error.

USBD_ERROR 1 Operation failed.

USBDERR_BUSY 1 Endpoint is busy.

USBDERR_INVALIDEP 3 Invalid endpoint.

USBDERR_NOTREADY 5 Transfer cannot be started.

USBDERR_INTERNAL 6 Internal error.

USBDERR_COMM 7 Communication error.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 36 www.hcc-embedded.com

3.5 Types and Definitions

usbd_iso_buffer_t

This structure is only used if USBD_ISOCHRONOUS_SUPPORT is enabled.

Parameter name Description Type

* data Pointer to the data. void

size Size of the buffer. uint32_t

nbytes Number of bytes. uint32_t

rd_ndx uint32_t

USB Driver State Values

The driver may be in any of the following states:

Value Description

USBDST_DISABLED State after .usbd_init()

USBDST_DEFAULT State after USB reset.

USBDST_ADDRESSED State after "set address" request completed.

USBDST_CONFIGURED State after "set configuration" request completed.

USBDST_SUSPENDED State after suspend.

USB Transfer State Values

A transfer may be in any of the following states:

Value Description

USBDTRST_DONE Transfer ended.

USBDTRST_BUSY Low level driver is busy.

USBDTRST_CHK Check status.

USBDTRST_SHORTPK Ended with short packet.

USBDTRST_EP_KILLED Failed; endpoint no longer available.

USBDTRST_COMM Communication error.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 37 www.hcc-embedded.com

Test Modes

There are four test modes.

Value Description

USBD_TEST_J_MODE J mode.

USBD_TEST_K_MODE K mode.

USBD_TEST_SE0_NAK Single Ended Zero NAK.

USBD_TEST_PACKET_MODE Packet mode.

Events

usbd_stprx_event

This event is sent by the low level driver when a setup packet is received successfully.

usbd_bus_event

This event is sent by the low level driver when an event such as a reset, suspend, or wakeup occurs on the

bus.

Endpoint Attributes

These are defined in the base package file :usbd_std.h

Value Description

EPD_ATTR_CTRL Control endpoint.

EPD_ATTR_ISO Isochronous endpoint.

EPD_ATTR_BULK Bulk endpoint.

EPD_ATTR_INT Interrupt endpoint.

USB Device Low Level Driver Interface Specification

Copyright HCC Embedded 2014 38 www.hcc-embedded.com

4 Integration

4.1 OS Abstraction Layer (OAL)

All HCC modules use the OS Abstraction Layer (OAL) that allows the module to run seamlessly with a wide

variety of RTOSes, or without an RTOS.

The low level driver uses the following OAL components:

OAL Resource Number Required

Tasks 2

Mutexes 1

Events 3

4.2 PSP Porting

The Platform Support Package (PSP) is designed to hold all platform-specific functionality, either because it

relies on specific features of a target system, or because this provides the most efficient or flexible solution

for the developer.

The driver makes use of the following standard PSP functions:

Function Package Element Description

psp_memcpy() psp_base psp_string Copies a block of memory. The result is a binary copy of the

data.

psp_memset() psp_base psp_string Sets the specified area of memory to the defined value.

The driver makes use of the following standard PSP macro:

Macro Package Element Description

PSP_WR_LE16 psp_base psp_endianness Writes a 16 bit value to be stored as little-endian to a

memory location.

	System Overview
	Introduction
	Packages and Documents
	Packages
	Documents

	Driver Operation
	Low Level Driver Components
	Bus Event Monitor
	EP0 Receive Handler
	EP Receive/Transmit Handler
	SOF Interrupt Handler (optional)
	SOF Callback Table

	Non-isochronous Endpoint Communication
	Isochronous Endpoint Communication
	Driver Configuration
	Endpoint Information Management

	API
	Module Management
	usbd_hw_init
	usbd_hw_start
	usbd_hw_stop
	usbd_hw_delete

	Driver Management
	usbd_add_ep
	usbd_remove_ep
	usbd_send
	usbd_receive
	usbd_add_fifo
	usbd_drop_fifo
	usbd_at_high_speed
	usbd_get_stall
	usbd_set_stall
	usbd_clr_stall
	usbd_get_state
	usbd_set_addr_post
	usbd_set_addr_pre
	usbd_set_cfg_post
	usbd_set_cfg_pre
	usbd_set_testmode

	Callback Functions
	usbd_pup_on_off
	usbd_is_self_powered
	usbd_conn_state
	usbd_vbus

	Error Codes
	Types and Definitions
	usbd_iso_buffer_t
	USB Driver State Values
	USB Transfer State Values
	Test Modes
	Events
	Endpoint Attributes

	Integration
	OS Abstraction Layer (OAL)
	PSP Porting

