
SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 1 www.hcc-embedded.com

SafeFLASH File System

NOR Drive User Guide

Version 1.70

For use with SafeFLASH File System NOR Drive

versions 2.03 and above

Date: 15-Feb-2018 13:17

All rights reserved. This document and the associated software are the sole property of HCC

Embedded. Reproduction or duplication by any means of any portion of this document without the

prior written consent of HCC Embedded is expressly forbidden.

HCC Embedded reserves the right to make changes to this document and to the related software at

any time and without notice. The information in this document has been carefully checked for its

accuracy; however, HCC Embedded makes no warranty relating to the correctness of this document.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 2 www.hcc-embedded.com

Table of Contents

System Overview __ 4

Introduction ___ 5

Feature Check ___ 7

Packages and Documents __ 8

Packages __ 8

Documents __ 8

Change History ___ 10

Source File List ___ 11

API Header File ___ 11

Configuration File ___ 11

Source Files __ 11

Physical Chip Handler __ 12

Version File __ 12

Configuration Option ___ 13

NOR Flash Explained __ 14

Flash Types __ 14

Features of NOR Flash ___ 14

System Features ___ 15

Sectors and File Storage __ 15

Physical Device Usage ___ 16

Reserved Blocks ___ 16

File System Blocks ___ 17

Descriptor Blocks __ 18

Example 1 __ 19

Example 2 __ 20

Application Programming Interface ___ 21

API Functions __ 21

fs_getmem_flashdrive ___ 22

fs_mount_flashdrive __ 23

Using f_mountdrive with NOR Flash __ 24

Mounting a NOR Drive __ 26

Physical Interface Functions ___ 27

fs_phy_nor_xxx __ 28

ReadFlash __ 29

WriteFlash __ 30

EraseFlash ___ 31

VerifyFlash ___ 32

BlockCopy __ 33

FS_FLASH Structure ___ 34

Error Codes __ 36

Subroutine Descriptions and Notes for the Sample Driver ____________________________________ 38

FS_FLASHBASE ___ 38

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 3 www.hcc-embedded.com

RemoveWriteProtect __ 38

SetWriteProtect __ 38

GetBlockAddr(block: long, relsector: long) ___ 38

WriteCmd(cmd: ushort) __ 38

DataPoll(addr: long, chk ushort) ___ 39

EraseFlash(block: long) __ 39

WriteFlash(data: ptr, block: long, relsector: long, len: long, sdata: long) _______________________ 40

VerifyFlash(data: ptr, block: long, relsector: long, len: long, sdata: long) ______________________ 40

ReadFlash(data: ptr, block: long, blockrel: long, datalen: long) _____________________________ 41

fs_phy_nor_xxx (flash: struct) ___ 41

fnWriteWord (base: ptr, addr: long, data: ushort) __ 41

Pre-erasing Blocks of Flash ___ 42

Requirements and Operation __ 42

Requirements ___ 42

Additional Variables Required ___ 42

Suspend erase and Resume erase Functions ___ 43

Flowchart Examples ___ 44

LowFlashErase __ 45

Initialization ___ 46

ReadFlash Function __ 47

VerifyFlash Function __ 48

WriteFlash Function __ 49

EraseFlash Function __ 50

The Flash Driver Test Suite ___ 51

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 4 www.hcc-embedded.com

1 System Overview
This chapter contains the fundamental information for this module.

The component sections are as follows:

Introduction – describes the main elements of the module.

Feature Check – summarizes the main features of the module as bullet points.

Packages and Documents – the section lists the packages that you need in order to use Packages

this module. The section lists the relevant user guides.Documents

Change History – lists the earlier versions of this manual, giving the software version that each

manual describes.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 5 www.hcc-embedded.com

1.1 Introduction

This guide is for those who want to implement a NOR drive for HCC's SafeFLASH file system.

The following diagram shows the structure of the file system software:

In this diagram:

The main SafeFLASH package provides the file API and intermediate file system. This is described in

the .HCC SafeFLASH File System User Guide

The NOR flash driver is the device driver. This guide shows how to add this to the build. Using the

available sample drivers as a model, you can create a driver that meets your specific needs.

The NOR physical handler performs the translation between the driver and the physical flash

hardware. Generally only the physical handler needs to be modified when the hardware configuration

changes (for example, a change to a different chip type, or use of 1/2/4 devices in parallel).

https://doc.hcc-embedded.com/display/udcd/SafeFLASH+File+System+User+Guide

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 6 www.hcc-embedded.com

Note:

HCC Embedded has a range of physical handlers available to make the porting process as

simple as possible. HCC Embedded also offers special porting services when required.

HCC Embedded offers hardware and firmware development consultancy to assist developers

with the implementation of flash file systems.

The SafeFLASH file system was previously known as EFFS-STD. All references to STD in the

code are historical and refer to the file system’s original name.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 7 www.hcc-embedded.com

1.2 Feature Check

For a full list of SafeFlash features, see the .HCC SafeFlash File System User Guide

The system features which are especially relevant to NOR flash are as follows:

Support for all NOR flash types.

Easy porting for all known device types.

Static and dynamic wear leveling.

Bad block management.

Sample driver available with porting description.

https://doc.hcc-embedded.com/display/udcd/SafeFLASH+File+System+User+Guide

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 8 www.hcc-embedded.com

1.3 Packages and Documents

Packages

The table below lists the packages that you need in order to use this module and other packages that HCC

can provide:

Package Description

hcc_base_doc This contains the two guides that will help you get started.

fs_safe The SafeFLASH base package.

fs_safe_nor The SafeFLASH NOR package described in this document.

fs_safe_nor_drv_sample A range of sample drivers available to help with development.

fs_safe_nor_drv_xxx A range of reference drivers available to help with development.

Documents

For an overview of HCC file systems and guidance on choosing a file system, see on Product Information

the main HCC website.

Readers should note the points in the on the HCC documentation website.HCC Documentation Guidelines

HCC Firmware Quick Start Guide

This document describes how to install packages provided by HCC in the target development environment.

Also follow the when HCC provides package updates.Quick Start Guide

HCC Source Tree Guide

This document describes the HCC source tree. It gives an overview of the system to make clear the logic

behind its organization.

HCC SafeFLASH File System User Guide

This document describes the base SafeFLASH System.

HCC SafeFLASH File System NOR Drive User Guide

This is this document.

https://www.hcc-embedded.com/embedded-systems-software-products/file-system/nand-nor-flash-file-systems
https://doc.hcc-embedded.com/display/HCCDocRoot/HCC+Documentation+Guidelines

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 9 www.hcc-embedded.com

Other HCC SafeFLASH Guides

These describe other SafeFLASH components:

HCC SafeFLASH File System RAM Drive User Guide – documents the SafeFLASH system for RAM.

HCC SafeFLASH File System NAND Drive User Guide – documents the SafeFLASH system for

NAND flash.

HCC SafeFLASH for Adesto DataFlash Drives User Guide – documents the SafeFLASH system for

Adesto DataFlash.®

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 10 www.hcc-embedded.com

1.4 Change History

This section describes past changes to this manual.

To view or download earlier manuals, see .File System PDFs

For the history of changes made to the package code itself, see .History: fs_safe_nor

The current version of this manual is 1.70. The full list of versions is as follows:

Manual

version

Date Software

version

Reason for change

1.70 2018-02-15 2.03 Improved/corrected description of FS_FLASH structure.

1.60 2017-10-10 2.03 Change to .fs_mount_flashdrive()

1.50 2017-08-31 2.02 Corrected list.Packages

1.40 2017-06-26 2.02 New format.Change History

1.30 2017-03-27 2.02 Added function group descriptions to API.

1.20 2015-12-22 2.01 Added and sections, other small Change History API Functions

changes.

1.10 2014-08-20 1.02 Reorganized .System Overview

1.00 2014-08-06 1.02 First online version.

https://doc.hcc-embedded.com/display/HCCDocRoot/File+System+PDFs#FileSystemPDFs-SafeFLASHFileSystemNORDrive
https://doc.hcc-embedded.com/display/HCCDocRoot/History%3A+fs_safe_nor

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 11 www.hcc-embedded.com

2 Source File List
This section describes all the source code files included in the system. These files follow the HCC

Embedded standard source tree system, described in the . All references to file HCC Source Tree Guide

pathnames refer to locations within this standard source tree, not within the package you initially receive.

Note: Do not modify any files except the configuration file.

2.1 API Header File

The file is the only file that should be included by an application using this module. src/api/api_safe_nor.h

It defines the and functions. For more details, see fs_mount_flashdrive() fs_getmem_flashdrive() API

.Functions

2.2 Configuration File

The file contains the single configurable parameter of the system. Configure src/config/config_safe_nor.h

this as required. This is the only file in the module that you should modify. For details of the option, see

.Configuration Option

2.3 Source Files

The NOR flash interface to the file system requires the following files which are in :src/safe-flash/nor

File Short description Description

flashdrv.c Device-independent

flash control layer.

The module provides a single clean interface flashdrv.c

between the physical chip and the intermediate file

system. It gets information about the configuration of the

underlying flash chip and the interface routines to call

from the physical chip handler module. It builds a

controller based on that information. This module also

performs the wear level control for the device.

Note: Normally this module does not require modification.

If changes are required, we strongly recommend that you

contact HCC Embedded about your requirements.

flashdrv.h Header file. NOR flash driver header.

https://doc.hcc-embedded.com/display/STQSG/Source+Tree+Guide

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 12 www.hcc-embedded.com

2.4 Physical Chip Handler

The physical chip handler module is located in the relevant sample driver folder in the

 package. These folders are in .safe_nor_drv_sample src/safe-flash/nor/phy/sample

The module depends on the specific flash device and its configuration. Relevant data are the manufacturer,

chip size, number of interface bits (8, 16, or 32), and the number and arrangement of the chips (parallel or

serial). All of these factors influence the code in this module.

2.5 Version File

The file contains the version number of this module. This version number is src/version/ver_safe_nor.h

checked by all modules that use this module to ensure system consistency over upgrades.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 13 www.hcc-embedded.com

3 Configuration Option
Set the single system configuration option in the file .src/config/config_safe_nor.h

FS_NOR_MAXFILE

The maximum number of files that can be open at the same time. The default is 4.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 14 www.hcc-embedded.com

4 NOR Flash Explained
SafeFLASH allows the easy integration of all standard flash devices.

4.1 Flash Types

Two basic types of flash devices are generally available, NOR and NAND. These have quite distinct

physical characteristics and thus require quite different handling, but they do have the following basic

properties in common:

They are designed for non-volatile storage of code and data.

An area must be erased before it is written to. Erasing changes all erased bits to 1. Programming

consists of changing 1s to 0s. To change a 0 to a 1, an erase operation must be performed.

They are all divided into erase units (blocks). In order to erase any part, the whole block must be

erased.

Data areas all wear out after a number of erase cycles. The guaranteed number of successful erase

cycles varies among chip types. Therefore, it is important for any file system that uses flash to

manage the wearing of the flash. This is done by avoiding overuse of any one block. HCC's wear

leveling algorithms manage this efficiently.

This guide only covers NOR flash.

4.2 Features of NOR Flash

NOR flash has been the cornerstone of non-volatile memory in embedded systems for many years. NOR

has two basic characteristics:

It stores data in a non-volatile way.

It can be accessed directly from an address bus (this is termed "random access") so can be used to

run code.

The main drawback of NOR flash is that the erase/write time is very long. Even if small amounts of data are

written, an erase may cause a delay of as much as two seconds. Careful design of the SafeFLASH file

system has ensured that this kind of behavior is minimized, but in certain cases it is unavoidable.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 15 www.hcc-embedded.com

5 System Features
This section covers the following:

Sectors and File Storage – explains how blocks of the file storage section of the file system are sub-

divided, and how to allocate blocks most efficiently.

Physical Device Usage – shows how to assign the three types of block to the device.

5.1 Sectors and File Storage

The blocks of the file storage section of the file system are sub-divided into sectors of equal size. These

sectors are the minimum writeable area on the device and the minimum area taken up by a file. For file

systems with many small files, it is advantageous to keep the sector size small to maximize the number of

files that may be stored. An additional benefit is that if the files are small, many more can be written before a

block erase is required.

For example, if there is one sector per block, a block must be erased for every file. However, if there are 32

sectors per block then 32 small files can be written before it is necessary to erase another block.

There is, however, a balance to be struck between the maximum number of files and the number of sectors

in the system.

Note: The utility in the folder of the main package should help you FSmem.exe util fs_safe

understand the use of blocks and make it easier to derive the optimum solution for your needs.

A descriptor block must contain:

Block descriptors (6 bytes each).

Sector descriptors (2 bytes each).

File descriptors (32 bytes each).

Thus the maximum number of files allowed in the system may be given by this formula:

Max Files < ((DescSize-DescCache) - 6*Maxblock – 2*Maxblock*sectorperblock)/32

You need to find a balance between having many sectors per block and allowing enough space in the

descriptor for the required number of file descriptors. If you cannot find a balance, consider larger descriptor

blocks, but this comes with a penalty: the erase time of the frequently-used descriptor blocks increases.

Again, use the utility to calculate the capabilities of a particular file system on the basis of input FSmem.exe

configuration information.

Note: If files with long names are used, the total number of files that can be stored is reduced.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 16 www.hcc-embedded.com

1.

2.

5.2 Physical Device Usage

You must make some decisions about how to use the flash device. Note the following:

All flash devices are divided into a set of erasable blocks. On some devices the size of these blocks

may vary.

You can only write to an erased location.

You cannot erase anything smaller than a block.

These factors mean that some complex management software has to be used.

Note: The utility in the folder of the main package should help you FSmem.exe util fs_safe

understand the usage of the blocks and make it easier to derive the optimum solution for your

requirements.

SafeFLASH operates on a set of logical blocks that may be further divided into sectors. The physical driver

must do two things in this respect:

Define for the file system which logical block numbers are to be used for a particular purpose. This is

configured in the structure and returned to the file system by the FS_FLASH fs_phy_nor_xxx()

function.

Provide a mapping between the logical block numbers used by the file system and the physical

addresses of the blocks in the flash device (this is performed by the function).GetBlockAddr()

You can assign three types of block to the device:

Reserved blocks – for processes other than the file system. An example is booting.

File system blocks – to store file information.

Descriptor blocks – to hold information about the structure of the file system, wear, and so on. By

using a minimum of two descriptor blocks (and management software), the system is made fail-safe.

The following sections describe how to assign these. They provide worked examples.

Reserved Blocks

Blocks can be reserved for private usage without restriction. To do this, simply omit those blocks from the

function.GetBlockAddr()

Reserved blocks may be accessed by using the function and also by selecting the physical GetBlockAddr()

block numbers to use and ensuring that these are not specified in the descriptor and file system usage

described below.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 17 www.hcc-embedded.com

Note: To ensure interoperability, take care in accessing reserved blocks and pay attention to the

device specification. Some devices allow an erase operation to be performed while another block is

being read, others have different rules. A general rule is to use either the file system or the reserved

sectors at any one time, not both. In any case, clear understanding of specific devices is needed.

File System Blocks

Allocate as many of these as required for file storage. Set the following parameters up by using the

 function to create an structure:fs_phy_nor_xxx() FS_FLASH

maxblock

The number of erasable blocks that are available for file storage.

blocksize

The size of the blocks to be used in the file storage area. This is an erasable unit of the flash chip. All blocks

in the file storage area must be the same size. This may be different from the where the flash chip descsize

has erasable units of different sizes.

sectorsize

The sector size. Each block is divided into a number of sectors. The is the smallest usable unit in sectorsize

the system so represents the minimum file storage area. For best usage of the flash blocks, the sector size

should always be a power of 2.

sectorperblock

The number of sectors in a block. It must always be true that:

sectorperblock = /blocksize sectorsize

blockstart

The logical number of the first block that may be used for file storage. This is the logical number used when

the function is called.GetBlockAddr()

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 18 www.hcc-embedded.com

Descriptor Blocks

(Also see .)Sectors and File Storage

These blocks contain critical information about the file system, including block allocation, wear, caching, and

file/directory information. They are allocated automatically from the file system blocks. At least two

descriptor blocks that can be erased independently must be included in the system. An optional descriptor

writing cache may be configured; this improves file system performance.

On a flash device with different sized blocks, it is generally sensible to use some of the smaller blocks as

descriptor blocks. This also improves the performance of the system. However, when using the cache this is

not so important and it is preferable to allocate a larger cache.

Set the following parameters up by using the function to create an structure:fs_phy_nor_xxx() FS_FLASH

descsize

This is the size of a descriptor block. It is the maximum size of FAT+directory+block index.

Note: Where RAM usage is a consideration, it is also possible to set the descriptor size to less than the

physical block size, so long as it fits in a single physical block that is used only for this purpose.

descblockstart

The logical number of the first block to be used by the file system as a descriptor block.

descblockend

The logical number of the last block to be used by the file system as a descriptor block.

cacheddescsize

The descriptor write cache size. This number must be less than , since the cache is allocated in the descsize

descriptor block. If this is set to zero the descriptor write cache method is not used. The descriptor write

cache is an efficient method of updating the changes in the descriptor, since the whole descriptor need not

be rewritten, while the 100% power-fail safe characteristics of the system are retained.

Use of the descriptor write cache reduces to an absolute minimum the wear leveling and the number of

erases required when updating the system.

Using the descriptor write cache is highly recommended since performance and wear characteristics of the

system are improved by a larger cache. However, a larger cache size also reduces the number of directory

entries; use the utility to check the effect of this.FSmem.exe

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 19 www.hcc-embedded.com

Example 1

Here the target flash device has 35 erasable blocks (1x16KB, 2x8KB, 1x32KB, 31x64KB) and the user

wants to reserve blocks 0 and 3 for private usage. This table shows a possible configuration:

Block Size Description

BLOCKSIZE 64K Size of file storage blocks.

BLOCKSTART 4 Logical first file storage block (4-18 used).

MAXBLOCKS 31 Number of blocks for use by file storage.

DESCSIZE 8K Descriptor size.

DESCBLOCKSTART 1 Logical first descriptor block number.

DESCBLOCKS 2 Number of descriptor blocks.

DESCCACHE 2K Set a write cache of 2KB.

The table below shows how the physical/logical blocks are arranged:

Physical Block

Number

Physical Block

Size

Logical Block

Number

Usage

0 16KB 0 Reserved block.

1 8KB 1 Descriptor block.

2 8KB 2 Descriptor block.

3 32KB 3 Reserved block.

4…34 64KB 4-34 File storage blocks.

Thus the algorithm for this could be:GetBlockAddr

unsigned long GetBlockAddr (long block, long relsector)

{

 if(block==0) /* free/unused block */

 return(0);

 if(block==1) /* descriptor block */

 return(16K);

 if(block==2) /* descriptor block */

 return(16K+8K);

 if(block==3) /* free/unused block */

 return(16K+8K+8K);

 /* file system blocks */

 return(16K+8K+8K+32K+(block-BLOCKSTART)*BLOCKSIZE)+ (relsector*SECTORSIZE));

}

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 20 www.hcc-embedded.com

Example 2

This example uses a flash device with 512*128KB erasable blocks. A minimum of two erasable blocks must

be used for descriptors. These blocks are quite large. Therefore it is a good idea to define a large part of

this for a write cache and in this example we create a 32KB cache.

Using a cache of this size has two advantages:

The number of required erases is reduced.

The wear on the device is reduced.

We then decide to use the remaining 510 physical blocks for file system storage. So a configuration could

look like this:

Block Size Description

BLOCKSIZE 128K Size of file storage blocks.

BLOCKSTART 0 Logical first file storage block (0 – 509 are used).

MAXBLOCKS 510 Number of blocks for use by file storage.

DESCSIZE 128K Descriptor size (4 per physical block).

DESCBLOCKSTART 510 Logical first descriptor block number.

DESCBLOCKS 2 Number of descriptor blocks.

DESCCACHE 32K Size of write descriptor cache.

The table below shows how the physical/logical blocks are arranged:

Physical Block

Number

Physical Block

Size

Logical Block

Number

Usage

0-509 64KB 0-509 File storage blocks

510-511 64KB 510-511 Descriptors

The algorithm in the driver for the above configuration could be modified to:GetBlockAddr

unsigned long GetBlockAddr (long block, long relsector)

{

 return((block*BLOCKSIZE)+(relsector*SECTORSIZE));

}

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 21 www.hcc-embedded.com

6 Application Programming Interface
This section documents the Application Programming Interface (API). It includes all the functions that are

available to an application program.

6.1 API Functions

The API functions are the following:

Function Description

fs_getmem_flashdrive() Returns the memory required for the driver in bytes.

fs_mount_flashdrive() Called by to mount and map a new drive.f_mountdrive()

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 22 www.hcc-embedded.com

fs_getmem_flashdrive

Use this function to get the required memory for a driver.

The function calculates and returns the amount of memory that must be allocated for the physical driver.

You must then allocate the memory and pass its pointer and size to . See the example code f_mountdrive()

in for details.Mounting a NOR Drive

Format

extern long fs_getmem_flashdrive (FS_PHYGETID phyfunc)

Arguments

Argument Description Type

phyfunc The function of the physical chip driver to be mounted fs_phy_nor_xxx()

(for example, for AMD flash).fs_phy_nor_29lvxxx()

FS_PHYGETID

Return value

The required memory.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 23 www.hcc-embedded.com

fs_mount_flashdrive

This function is called by to mount and map a new drive.f_mountdrive()

For more details, see .Using f_mountdrive with NOR Flash

Format

extern int fs_mount_flashdrive (

 void * vol_dsc,

 FS_PHYGETID phyfunc)

Arguments

Argument Description Type

vol_dsc The volume descriptor of the volume to mount. void *

phyfunc The physical driver. FS_PHYGETID

Return values

Return value Description

0 Drive successfully mounted.

FS_VOL_NOTFORMATTED Drive is mounted but is not formatted.

FS_VOL_NOMEMORY Not enough memory, drive is not mounted.

FS_VOL_DRVERROR Mount driver error, not mounted.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 24 www.hcc-embedded.com

Using f_mountdrive with NOR Flash

The function is part of the main SafeFLASH API. It calls . This page f_mountdrive() fs_mount_flashdrive()

shows how to use the fiunction with NOR flash. For a code example, see .Mounting a NOR Drive

Note: The main describes how to use this call for all drive types.SafeFLASH File System User Guide

Format

int f_mountdrive (

 int drivenum,

 void * buffer,

 long buffsize,

 FS_DRVMOUNT mountfunc,

 FS_PHYGETID phyfunc)

Arguments

Argument Description Type

drivenum The number of the drive to mount (0='A', 1='B', and so on.). The

maximum value of is set in FS_MAXVOLUME-1 in .drivenum fsm.h

int

buffer The buffer pointer to be used by the file system. void *

buffsize The size of the allocated buffer. long

mountfunc The function.fs_mount_flashdrive() FS_DRVMOUNT

phyfunc A pointer to the physical driver function for the fs_phy_nor_xxx()

desired device that is called by the mount function to get information

about how to use it.

Standard examples are:

fs_phy_nor_sim() – for PC emulation of physical NOR.

fs_phy_nor_29lvxxx() – for AMD flash.

FS_PHYGETID

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 25 www.hcc-embedded.com

Return values

Return value Description

FS_VOL_OK Drive successfully mounted.

FS_VOL_NOTMOUNT Drive not mounted.

FS_VOL_NOTFORMATTED Drive is mounted but is not formatted.

FS_VOL_NOMEMORY Not enough memory, drive is not mounted.

FS_VOL_NOMORE No more drives available (FS_MAXVOLUME).

FS_VOL_DRVERROR Mount driver error, not mounted.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 26 www.hcc-embedded.com

Mounting a NOR Drive

The following code shows how to mount your NOR drive.

Note:

Although the code sample shows dynamic memory allocation this can also be done statically.

If the function is called during development the number returned can be used (and f_getmem()

not calculated at run time), as long as the flash type and its configuration does not change.

long memsize;

char *p1buffer;

 memsize = fs_getmem_flashdrive(fs_phy_nor_29lvxxx);

 if (!memsize)

 {

 /* configuration error */

 }

 p1buffer = (char*)malloc(memsize);

 if (!p1buffer)

 {

 /* Not enough memory to allocate */

 return;

 }

 /* Drive A will be NOR flashdrive with AMD physical driver */

 /* The initial 0 is the drive number to use (0 = A) */

 f_mountdrive(0, p1buffer, memsize, fs_mount_flashdrive, fs_phy_nor_29lvxxx);

 /* The drive is ready for use! */

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 27 www.hcc-embedded.com

6.2 Physical Interface Functions

The functions in this section provide the interface to the upper layer and must be ported to meet the

requirements of the particular flash devices used.

The function is the key to understanding the interface between the specific physical fs_phy_nor_xxx()

driver and the file system. This is the only public function in this module and it must be passed to the file

system's API function to initialize the physical driver. The returned by f_mountdrive() FS_FLASH structure

this call contains all the configuration information about block usage required by the upper layers, as well as

a set of pointers to the following NOR interface functions:

The other functions are the following:

Function Description

ReadFlash() Reads data from flash.

WriteFlash() Writes data to the flash device.

EraseFlash() Erases a block in flash.

VerifyFlash() Compares written data with the original. Call this after WriteFlash()

to verify written data against the original data.

BlockCopy() Copies one block to another block. (Only required if static wear

leveling is used.)

All these functions require subroutine calls to do their work, as described in Subroutine Descriptions and

 .Notes for the Sample Driver

http://doc.hcc-embedded.com//display/SFFSNOR/Subroutine+Descriptions+and+Notes+for+the+Sample+Driver

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 28 www.hcc-embedded.com

fs_phy_nor_xxx

Use this function to initialize the flash device and also to detect the flash type.

This function gives information to the upper layer about the number of blocks, block sizes, sector size,

cache size, and so on.

Note: This is the first call made by the upper layer. It is used to discover the flash device configuration.

Format

int fs_phy_nor_xxx (FS_FLASH * flash)

Arguments

Argument Description Type

flash The flash structure that needs to be filled. FS_FLASH *

Return values

Return value Description

0 Successful execution.

Else See Error Codes.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 29 www.hcc-embedded.com

ReadFlash

Use this function to read data from flash.

Format

int ReadFlash (

 void * data,

 long block,

 long blockrel,

 long datalen)

Arguments

Argument Description Type

data A pointer to the data storage area. void *

block The zero-based number of the block to read. long

blockrel The relative position in the block to start reading at. This

can range from zero to the block size.

long

datalen The length of data to read. This is always less than block

size and never extends beyond a given block, even if bloc

 points into the middle of the block.krel

long

Return values

Return value Description

0 Successful execution.

Else See Error Codes.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 30 www.hcc-embedded.com

WriteFlash

Use this function to write data to the flash device.

Format

int WriteFlash (

 void * data,

 long block,

 long relsector,

 long size,

 long relpos)

Arguments

Argument Description Type

data A pointer to the source data to be written. void *

block The zero-based number of the block to store data in. long

sector The zero-based relative sector number in the block. long

size The length of data to be stored. long

relpos The relative position in the block to write data to. long

Return values

Return value Description

0 Successful execution.

Else See Error Codes.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 31 www.hcc-embedded.com

EraseFlash

Use this function to erase a block in flash.

Format

int EraseFlash (long block)

Arguments

Argument Description Type

block The zero-based number of the block to be erased. long

Return values

Return value Description

0 Successful execution.

Else See Error Codes.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 32 www.hcc-embedded.com

VerifyFlash

Use this function to compare written data with the original.

Call this after to verify written data against the original data. The parameters are the same as WriteFlash()

for .WriteFlash()

Note: This function is not always necessary; it depends on the particular flash chip and what is

specified in the datasheet to guarantee that a program operation has completed successfully. If this

function is not needed, then it should return with zero.

Format

int VerifyFlash (

 void * data,

 long block,

 long relsector,

 long size,

 long relpos)

Arguments

Argument Description Type

data A pointer to the source data to be compared. void *

block The zero-based number of the block with data to be

compared.

long

relsector The zero-based relative sector number in the block. long

size The length of data to be compared. long

relpos The relative position in the block of data to verify. long

Return values

Return value Description

0 Successful execution.

Else See Error Codes.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 33 www.hcc-embedded.com

BlockCopy

Use this function to copy one block to another block.

Note: Only use this if static wear leveling is in use.

Implement this function to use any features of the target device that may be available to accelerate a block-

to-block copy operation. Many devices have features to support block copy. These help to reduce CPU load

and improve system performance.

Format

int BlockCopy (

 long destblock,

 long soublock)

Arguments

Argument Description Type

destblock The block number to copy to. long

soublock The block number to copy from. long

Return values

Return value Description

0 Successful execution.

Else See Error Codes.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 34 www.hcc-embedded.com

6.3 FS_FLASH Structure

This is the FS_FLASH structure that the module must set up by using .fs_phy_nor_xxx

For more details of the block settings, see .Physical Device Usage

Element Type Description

maxblock long Maximum number of blocks that can be used.

blocksize long Block size in bytes.

sectorsize long Sector size to use.

sectorperblock long Sector/block (block size/sector size).

blockstart long The logical number of the first block in the created

partition. This number is returned by the driver at

initialization. The driver must choose how to map the

logical block numbers it provides to the file system to the

physical blocks on the target flash.

descsize long Maximum size of descriptor: FAT+directory+block index.

descblockstart long The first block that is used for the above descriptor.

descblockend long The last block that is used for the above descriptor.

separatedir long Not used in NOR.

cacheddescsize long The size of the area of the descriptor block that is used to

cache changes to the descriptor block. A larger value

causes the system to rewrite the descriptor block less

frequently (improving wear and performance) but reduces

the available number of file descriptors. Use the fsmem

tool to model this.

cachedpagenum long Not used in NOR.

cachedpagesize long Not used in NOR.

ReadFlash FS_PHYREAD Read content function.

EraseFlash FS_PHYERASE Erase a block function.

WriteFlash FS_PHYWRITE Write content function.

VerifyFlash FS_PHYVERIFY Verify content function.

CheckBadBlock FS_PHYCHECK Not used in NOR.

GetBlockSignature FS_PHYSIGN Not used in NOR.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 35 www.hcc-embedded.com

Element Type Description

WriteVerifyPage FS_PHYCACHE Not used in NOR.

BlockCopy FS_PHYBLKCPY Accelerated block copy function.

chkeraseblk unsigned char * When the flash driver allows pre-erasing of blocks (that

is, performing erase operations while the system is less

busy), the driver must provide this buffer to the flash layer

so that it can check whether a block is ready to be

erased.

erasedblk unsigned char * When the flash driver allows pre-erasing of blocks (that

is, performing erase operations while the system is less

busy), the driver must provide this buffer to the flash layer

so that it can check whether a block has already been

erased.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 36 www.hcc-embedded.com

6.4 Error Codes

The table below lists all the error codes that may be generated by API calls to HCC’s file systems. Please

note that only a few of these error codes relate specifically to NOR flash.

Error Value Meaning

F_NO_ERROR 0 Successful execution.

F_ERR_INVALIDDRIVE 1 The specified drive does not exist.

F_ERR_NOTFORMATTED 2 The specified volume has not been formatted.

F_ERR_INVALIDDIR 3 The specified directory is invalid.

F_ERR_INVALIDNAME 4 The specified file name is invalid.

F_ERR_NOTFOUND 5 The file or directory could not be found.

F_ERR_DUPLICATED 6 The file or directory already exists.

F_ERR_NOMOREENTRY 7 The volume is full.

F_ERR_NOTOPEN 8 The file access function requires the file to be

open.

F_ERR_EOF 9 End of file.

F_ERR_RESERVED 10 Not used.

F_ERR_NOTUSEABLE 11 Invalid parameters for .f_seek()

F_ERR_LOCKED 12 The file has already been opened for writing

/appending.

F_ERR_ACCESSDENIED 13 The necessary physical read and/or write functions

are not present for this volume.

F_ERR_NOTEMPTY 14 The directory to be moved or deleted is not empty.

F_ERR_INITFUNC 15 No init function is available for a driver, or the

function generates an error.

F_ERR_CARDREMOVED 16 The card has been removed.

F_ERR_ONDRIVE 17 Non-recoverable error on drive.

F_ERR_INVALIDSECTOR 18 A sector has developed an error.

F_ERR_READ 19 Error reading the volume.

F_ERR_WRITE 20 Error writing file to volume.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 37 www.hcc-embedded.com

Error Value Meaning

F_ERR_INVALIDMEDIA 21 Media not recognized.

F_ERR_BUSY 22 The caller could not obtain the semaphore within

the expiry time.

F_ERR_WRITEPROTECT 23 The physical medium is write protected.

F_ERR_INVFATTYPE 24 The type of FAT is not recognized.

F_ERR_MEDIATOOSMALL 25 Media is too small for the format type requested.

F_ERR_MEDIATOOLARGE 26 Media is too large for the format type requested.

F_ERR_NOTSUPPSECTORSIZE 27 The sector size is not supported. The only

supported sector size is 512 bytes.

F_ERR_UNKNOWN 28 An unspecified error has occurred.

F_ERR_DRVALREADYMNT 29 The drive is already mounted.

F_ERR_TOOLONGNAME 30 The name is too long.

F_ERR_NOTFORREAD 31 Not for read.

F_ERR_DELFUNC 32 The delete drive driver function failed.

F_ERR_ALLOCATION 33 psp_malloc() failed to allocate the required

memory.

F_ERR_INVALIDPOS 34 An invalid position is selected.

F_ERR_NOMORETASK 35 All task entries are exhausted.

F_ERR_NOTAVAILABLE 36 The called function is not supported by the target

volume.

F_ERR_TASKNOTFOUND 37 The caller’s task identifier was not registered. This

is normally because has not been f_enterFS()

called.

F_ERR_UNUSABLE 38 The file system has become unusable. This is

normally a result of excessive error rates on the

underlying media.

F_ERR_CRCERROR 39 A CRC error has been detected on the file.

F_ERR_CARDCHANGED 40 The card that was being accessed has been

replaced with a different card.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 38 www.hcc-embedded.com

6.5 Subroutine Descriptions and Notes for the Sample Driver

This section describes all the subroutines. It includes notes for porting the routines to a particular hardware

design.

FS_FLASHBASE

This define specifies the base address for accessing the flash memory array. The value can be determined

only from the hardware design. Sample code is based on an ARM implementation and reads the value from

the flash chip selected.

RemoveWriteProtect

This routine removes hardware-supported write protect from flash's chip select. You may supply another

function that is based on your hardware design. If write protection is not required, this function may be left

empty.

SetWriteProtect

This routine sets hardware-supported write protection to flash's chip select (prevention for further writing).

You may supply another function that is based on your hardware design. If write protection is not required,

this function may be left empty.

GetBlockAddr(block: long, relsector: long)

This routine calculates the physical address of a relative sector in the specified block. When a descriptor

block is specified, the sector field should be ignored and the base address of the block should be returned.

Modify this routine to return the correct block/sector addresses for the requested logical blocks that have

been set up in the function.fs_phy_nor_xxx()

WriteCmd(cmd: ushort)

This routine writes a command sequence (0x555, 0xAA; 0x2AA, 0x55; 0x555, cmd) to a flash device.

Modify the commands so that they are appropriate for the type of flash device used.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 39 www.hcc-embedded.com

DataPoll(addr: long, chk ushort)

This is an AMD-specific subroutine for checking that data have been written correctly.

The algorithm is:

for

 if timeout reached return 2 /* Timeout error */

 readdata from flash addr

 if (data == chk) return 0 /* Ok */

 if (no poll needed) check data and return ok or data error

end for

EraseFlash(block: long)

This routine is used by the higher level software to erase a logical block of flash memory.

Modify the commands so that they are appropriate for the specific type of flash device used.

The basic algorithm is:

addr = GetBlockAddr(block, 0)

RemoveWriteProtect()

Send Erase Command and addr of which block need to be erased

SetWriteProtect()

return DataPoll(addr) /* wait until erase is finished and return with result */

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 40 www.hcc-embedded.com

WriteFlash(data: ptr, block: long, relsector: long, len: long, sdata: long)

This routine is called by the higher levels to write data to the flash device.

Note: The parameter is not used.sdata

Modify the commands so that they are appropriate for the specific type of flash device used.

The basic algorithm is:

Destaddr = GetBlockAddr(block, relsector)

Do 16bit data length align

RemoveWriteProtect()

for

 Send Write Command to flash device and program 16bit

 If (DataPoll(addr,data)) return error

 /* wait program end, if error returns */

 If length is reached then end of programming

end for

exit program mode by sending exit command to flash device

SetWriteProtect()

Return OK

VerifyFlash(data: ptr, block: long, relsector: long, len: long, sdata: long)

This routine is called by the higher levels after a write operation has been completed to ensure that the data

has been written correctly.

Note: The parameter is not used.sdata

Modify the commands so that they are appropriate for the specific type of flash device used.

The basic algorithm is:

Addr = GetBlockAddr(block, relsector) + Flash base

Do 16bit data length align

Verify programmed data with original data, if error then returns with error

If all data is checked returns with no error

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 41 www.hcc-embedded.com

ReadFlash(data: ptr, block: long, blockrel: long, datalen: long)

This routine reads the specified amount of data from the flash device.

Modify the commands so that they are appropriate for the specific type of flash device used.

The basic algorithm is:

Addr = GetBlockAddr(block, 0) + Flash base

Calculating start position from blockrel

Copy all data onto data address from flash device

fs_phy_nor_xxx (flash: struct)

This routine initializes internal functions of the flash structure.

The basic algorithm is:

RemoveWriteProtect()

Get device ID and manufacturer ID from the flash

SetWriteProtect()

Compare read values with all supported device/manufacture codes and fill the flash structure

with corresponding data (size, sectors, block information)

If a matching device is not found return with error

fnWriteWord (base: ptr, addr: long, data: ushort)

This routine adds the flash relative address to the base pointer, and writes 16 bits of data into the flash.

Modify this routine, and calls to it, depending on your hardware design.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 42 www.hcc-embedded.com

7 Pre-erasing Blocks of Flash
This section explains how to implement efficient pre-erase functionality on your driver, based on the

reference driver that is provided.

7.1 Requirements and Operation

Pre-erasing unused or dirty blocks of flash greatly improves system performance. The driver can be

designed to do this.

Requirements

Note the following:

Pre-erase can be performed only on devices that have commands for suspending and resuming the

erase operation. Because erase operations can take a significant time on a NOR flash device, using

these commands can greatly reduce system latencies. This section describes how to implement this

feature.

The host system must have some form of task switching and a priority mechanism to support

suspension of and resumption of the erase.

The requirements for using pre-erase are:

A low level task for erasing blocks. This task must be executed after calling NOR driver initialization,

because the mutex used is created during driver initialization.

A mutex for synchronization of processes.

Additional Variables Required

This section describes the items which are needed for pre-erasing.

Two additional fields must be provided in the at driver initialization:FS_FLASH structure

fl_chkeraseblk – the array contains information about the block to be erased.chkeraseblk
fl_erasedblk – the array contains the erased state of the block.erasedblk

These are simple character arrays containing as many entries as there are blocks available in the system.

The file system and driver use these arrays to synchronize with each other. At startup both these arrays

must be reset to zero (normally the C compiler does this, but not on all platforms).

Two additional variables must be provided:

fl_blknum – used for communication between the tasks. This variable signals which block is

currently erased or, when its value is 0xFFFF, indicates that no block is currently being erased.

Initialize this variable to 0xFFFF.

gl_initiated – ensures the mutex is created only once.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 43 www.hcc-embedded.com

1.

2.

3.

4.

The four new variables which are needed for pre-erasing are defined in the reference driver as follows:

static unsigned char fl_chkeraseblk[NUMOFBLOCKS];

static unsigned char fl_erasedblk[NUMOFBLOCKS];

static volatile long fl_blknum=0xffffUL;

static FS_MUTEX_TYPE gl_premutex;

7.2 Suspend erase and Resume erase Functions

The pre-erase function can only be used with a NOR device that has the suspend/resume erase functions.

These are used by the driver in this case to return control to the file system where the pre-erase operation is

pre-empted. This operates as follows:

Before it executes any operation (read/write/erase), the driver checks whether a block is being

erased.

If, say, a read operation is requested, the driver executes the command to suspend suspend erase

the current erase operation.

Data can now be read from the NOR device.

When the read operation finishes, the driver resumes the interrupted erase by issuing a resume

 command.erase

The following static functions in the reference driver are used by the other driver calls:

Function Description

Suspend Checks for a pending erase and, if one is pending, suspends it.

Resume erase Checks for a suspended erase and, if there is one, resumes it.

Wait for mutex Waits until the mutex is put (released).

Put mutex Puts (releases) the mutex for another task.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 44 www.hcc-embedded.com

7.3 Flowchart Examples

This section explains how to implement efficient pre-erase functionality on your driver, based on the

reference driver that is provided.

The following figures show how a pre-erased driver can be built and how the reference driver works. The

highlighted boxes contain the generic NOR driver functions.

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 45 www.hcc-embedded.com

LowFlashErase

This figure shows the low level pre-erase task that must be called cyclically. It returns when there is no

block to erase. The function is called .LowFlashErase

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 46 www.hcc-embedded.com

Initialization

This figure shows how to initialize the pre-erase system from driver initialization (the fs_phy_nor_xxx()

function in the reference driver):

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 47 www.hcc-embedded.com

ReadFlash Function

This figure shows how to implement the function:ReadFlash()

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 48 www.hcc-embedded.com

VerifyFlash Function

This figure shows how to implement the function:VerifyFlash()

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 49 www.hcc-embedded.com

WriteFlash Function

This figure shows how to implement the function:WriteFlash()

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 50 www.hcc-embedded.com

EraseFlash Function

This figure shows how to implement the function:EraseFlash()

SafeFLASH File System NOR Drive User Guide

Copyright HCC Embedded 2018 51 www.hcc-embedded.com

1.

2.

8 The Flash Driver Test Suite
Use the test suite to exercise the flash drivers and ensure that everything works correctly. This code tests

your ported flash driver in isolation, to ensure that it is ported correctly and is stable.

The test program requires the functions defined and implemented (as samples) in the file . This testdrv_s.c

is part of the base package and is located, with its header file , in the folder fs_safe testdrv_s.h

.fs_safe_xxx_xx/hcc/src/safe-flash/test

Port these functions to your system. See the comments and simple code for reference.

To use the test program:

Include and in your test project.testdrv_s.c testdrv_s.h

Call the following to execute the test code:

void f_dotestdrv (FS_PHYGETID phyfunc)

Errors in the execution of this test indicate that there is an error in the implementation of the driver. Contact

 if you need further advice.support@hcc-embedded.com

	System Overview
	Introduction
	Feature Check
	Packages and Documents
	Packages
	Documents

	Change History

	Source File List
	API Header File
	Configuration File
	Source Files
	Physical Chip Handler
	Version File

	Configuration Option
	NOR Flash Explained
	Flash Types
	Features of NOR Flash

	System Features
	Sectors and File Storage
	Physical Device Usage
	Reserved Blocks
	File System Blocks
	Descriptor Blocks
	Example 1
	Example 2

	Application Programming Interface
	API Functions
	fs_getmem_flashdrive
	fs_mount_flashdrive
	Using f_mountdrive with NOR Flash
	Mounting a NOR Drive

	Physical Interface Functions
	fs_phy_nor_xxx
	ReadFlash
	WriteFlash
	EraseFlash
	VerifyFlash
	BlockCopy

	FS_FLASH Structure
	Error Codes
	Subroutine Descriptions and Notes for the Sample Driver
	FS_FLASHBASE
	RemoveWriteProtect
	SetWriteProtect
	GetBlockAddr(block: long, relsector: long)
	WriteCmd(cmd: ushort)
	DataPoll(addr: long, chk ushort)
	EraseFlash(block: long)
	WriteFlash(data: ptr, block: long, relsector: long, len: long, sdata: long)
	VerifyFlash(data: ptr, block: long, relsector: long, len: long, sdata: long)
	ReadFlash(data: ptr, block: long, blockrel: long, datalen: long)
	fs_phy_nor_xxx (flash: struct)
	fnWriteWord (base: ptr, addr: long, data: ushort)

	Pre-erasing Blocks of Flash
	Requirements and Operation
	Requirements
	Additional Variables Required

	Suspend erase and Resume erase Functions
	Flowchart Examples
	LowFlashErase
	Initialization
	ReadFlash Function
	VerifyFlash Function
	WriteFlash Function
	EraseFlash Function

	The Flash Driver Test Suite

