
DHCP Server Technical Reference

Copyright HCC Embedded 2017 1 www.hcc-embedded.com

DHCP Server Technical 

Reference

Interniche Legacy Document

Version 1.00

Date: 15-May-2017 13:08

All rights reserved. This document and the associated software are the sole property of HCC 

Embedded. Reproduction or duplication by any means of any portion of this document without the 

prior written consent of HCC Embedded is expressly forbidden.

HCC Embedded reserves the right to make changes to this document and to the related software at 

any time and without notice. The information in this document has been carefully checked for its 

accuracy; however, HCC Embedded makes no warranty relating to the correctness of this document.



DHCP Server Technical Reference

Copyright HCC Embedded 2017 2 www.hcc-embedded.com

Table of Contents

Overview _____________________________________________________________________________ 3

Terms and Conventions  _______________________________________________________________ 3

What DHCP Does  ____________________________________________________________________ 3

BOOTP  ____________________________________________________________________________ 4

Porting  _____________________________________________________________________________ 4

Requirements  _______________________________________________________________________ 5

Operating System Requirements  _____________________________________________________ 5

Step by Step Porting Guide  ______________________________________________________________ 6

Source Files List  _____________________________________________________________________ 6

Standard Macros and Definitions  _____________________________________________________ 7

Memory Allocation _________________________________________________________________ 7

Debugging Aids  ___________________________________________________________________ 7

Features and Options  ______________________________________________________________ 8

dhcpport.c - The glue Layer  ____________________________________________________________ 9

UDP Hooks  ______________________________________________________________________ 9

Timers and Multitasking  ____________________________________________________________ 9

The DHCP Database _________________________________________________________________ 10

Database Initialization  _____________________________________________________________ 11

dhs_port.h  _________________________________________________________________ 11

Script commands  ____________________________________________________________ 11

dhcpsvr_file  _____________________________________________________________________ 12

Testing ____________________________________________________________________________ 12

Troubleshooting  ______________________________________________________________________ 13

UDP Transport ______________________________________________________________________ 13

Database Debugging _________________________________________________________________ 13

The DHCP User Menu  _________________________________________________________________ 14

dhs_addrpool _______________________________________________________________________ 14

dhs_client  _________________________________________________________________________ 15

dhs_enable  ________________________________________________________________________ 16

dhs_ifcfg  __________________________________________________________________________ 17

dhs_netstat  ________________________________________________________________________ 18

User Provided Functions  _______________________________________________________________ 19

UDP Network API Layer  ______________________________________________________________ 19

UDP Callback Function  _______________________________________________________________ 20

Timer Callback Function  ______________________________________________________________ 21



DHCP Server Technical Reference

Copyright HCC Embedded 2017 3 www.hcc-embedded.com

1 Overview
This Technical reference is provided with the InterNiche Portable Dynamic Host Configuration Protocol 

(DHCP) server. The purpose of this Document is to provide enough information so that a moderately 

experienced "C" programmer with a reasonable understanding of TCP/IP protocols can port the InterNiche 

Server to a new environment.

1.1 Terms and Conventions

In this document, the term "stack", when used without other qualification, means the InterNiche TCP/IP and 

related code as ported to an embedded system. "System" refers to your embedded system. "Sockets" refers 

to the TCP API developed for UNIX at U.C. Berkeley. A "user" or "porting engineer" usually refers to the 

engineer who is porting the server software. An "end user" refers to the person who ultimately ends up 

using the "user's" product. "FCS" is an acronym for "First Customer Ship", the point in the software 

development cycle when the product is declared ready to ship. A "packet" is a sequence of bytes sent on 

network hardware, also known as a "frame" or a "datagram".

Names of files, C structures and C routines are displayed as follows: .c_routine()

Samples of source code from C programs are displayed in these boxes:

/* C source file - yet another 'hello; program */

main()

{

   printf("hello world.\n");

}

1.2 What DHCP Does

DHCP stands for Dynamic Host Configuration Protocol. It is designed to ease configuration management of 

large networks by allowing the network administrator to collect all the IP hosts "soft" configuration 

information into a single computer. This includes IP address, name, gateway, and default servers. There are 

about 50 of these information items which can be assigned with DHCP, and DHCP is designed so that 

"custom" configuration items can be added easily.

DHCP is a "client/server" protocol, meaning that machine with the DHCP database "serves" requests from 

DHCP clients. The clients typically initiate the transaction by requesting an IP address and perhaps other 

information from the server. The server looks up the client in its database, usually by the client's media 

address, and assigns the requested fields. Clients do not always need to be in the server's database. If an 

unknown client submits a request, the server may optionally assign the client a free IP address from a "pool" 

of free addresses kept for this purpose. The server may also assign the client default information of the local 

network, such as the default gateway, the DNS server, and routing information.



DHCP Server Technical Reference

Copyright HCC Embedded 2017 4 www.hcc-embedded.com

When the IP addresses is assigned, it is "leased" to the client for a finite amount of time. The DHCP client 

needs to keep track of this lease time, and obtain a lease extension from the server before the lease time 

runs out. Once the lease has elapsed, the client should not send any more IP packets (except DHCP 

requests) until he get another address. This approach allows computers (such as laptops or factory floor 

monitors) which will not be permanently attached to the network to share IP addresses and not hog them 

when they are not using the net.

1.3 BOOTP

In both this manual and other DHCP literature, you will find numerous cross references to BOOTP. BOOTP 

is the protocol which preceded DHCP in the TCP/IP world, and in fact DHCP is just s superset of BOOTP. 

The main differences between the two are the lease concept, which was created for DHCP, and the ability 

to assign addresses from a pool. The InterNiche DHCP client can work with old fashioned BOOTP servers, 

and the InterNiche DHCP server can serve IP addresses to old BOOTP clients.

1.4 Porting

While processing DHCP requests, the server will consult a local database. This database is generally set up 

by an end user and contains the IP address pools, default information for clients, and perhaps special 

configurations for specific clients. This database may be stored in a traditional disk file or in flash. On some 

embedded systems it may even be practical to ship the server with a factory configured database.

In the world of portable stacks, the stack designer does not know what tasking system, user applications, or 

interfaces will be supported in the target system. So a "portable" stack is one that is designed with simple, 

generic interfaces in these areas, and a "glue" layer is created which maps this generic interface into the 

specific interfaces available on the target system. Again using the example of sending a packet, the stack 

would be designed with a generic  call, and the porting engineer would code a "glue" send_packet()

routine to send the packet on the target system's network interface.

Making a stack portable involves minimizing the number of calls which have to go across glue routines, and 

keeping the glue routines simple and therefore easy to implement. The glue routines also need to be well 

documented. The interfaces to the InterNiche DHCP have evolved through years of porting to a variety of 

processors, network media, and tasking systems. Wherever possible we have used standard interfaces (e.

g. Sockets, ANSI C library) or included glue routines to illustrate their use.



DHCP Server Technical Reference

Copyright HCC Embedded 2017 5 www.hcc-embedded.com

The bulk of the work in porting a stack is understanding and implementing these glue routines. The 

InterNiche DHCP server has two kinds of glue routines: database access and network access.

The calls to set and extract database items are abstracted, which means they are generic calls which will 

need to be provided as part of the port. Files are provided which use standard file IO calls ( , , fopen fread

etc) to implement a fully functional database, so if your target system has a disk-like device you will most 

likely be able to use this code as is. If your database will be kept in flash memory (and it does not have a file-

system like API), you will need to develop you own data structures and the code to access them.

The other set of glue routines needed for a port is the network access. If you are using the DHCP server 

with the InterNiche IP stack, you are in luck: a file is provided which implements the required routines on the 

lightweight API. We also provide a Sockets based glue layer for DHCP server. Most of our customers can 

use one of these two layers. The rest will need to provide some simple routines to allow the server access 

to their UDP protocol.

1.5 Requirements

Before beginning a port, the programmer should ensure that the necessary resources are available in the 

target environment. Here is a brief summary of services InterNiche DHCP server needs from the system:

Access to a UDP layer, with "listen" capabilities (e.g. Sockets)

A timer which ticks at least once a second.

A non-volatile read/write method for storing database items (e.g. disk or flash memory)

Memory as described below.

Operating System Requirements

The DHCP server also requires a few basic services from the operating system. These are listed here:

clock 

tick

The DHCP server needs to be called once a second to free resources for addresses which 

have timed out.

memory 

access

The standard calloc() and free() library calls are ideal, however DHCP server can also be 

mapped to a "partition" based system with very little effort.



DHCP Server Technical Reference

Copyright HCC Embedded 2017 6 www.hcc-embedded.com

1.  

2.  

3.  

4.  

2 Step by Step Porting Guide
The section describes the steps needed to port the InterNiche DHCP server to a new environment. The 

discussions below generally assume that the stack is being ported to a small or embedded system with a 

Sockets API interface and that a minimal ANSI C library is available.

The recommended steps to getting the server working on your target system are as follows:

Copy the portable source files into your development environment.

Create your version of  and compile portable sources.dhcpport.h

Code your glue layers ( ) and compile.dhcpport.c

Build a system, test, and debug.

2.1 Source Files List

Before beginning, you should be aware of which files in the InterNiche distribution are the "portable" files 

and which are not. The portable files are those which should be compiled and used on any target system 

without modification. The unportable, or "port dependent" files, are likely to need some modification for 

different target systems. The following is a list of DHCP server source files which should NOT need to be 

modified in the course of a normal port. If you feel you need to modify one of these files in the course of a 

routine port, please discuss it with InterNiche's technical support staff first, so we can either suggest an 

alternative, or modify our sources to reflect the change.

dhcpsvr.c, dhcpsvr.h, dhs_mod.c The kernel of the DHCP server. Do not modify.

The following port-dependent files may require some modification by the porting engineer.

dhs_file.

c

The database IO files: may need modification on some ports.

dhs_port.

c

The network (Sockets) and other system dependent calls

dhs_port.

h

Configuration defaults, definition of client structure, prototypes of port-dependent functions

dhs_nt.c InterNiche menu system routines - can be used as is with InterNiche menu system, else may 

be replaced or omitted.



DHCP Server Technical Reference

Copyright HCC Embedded 2017 7 www.hcc-embedded.com

Standard Macros and Definitions

InterNiche modules expect the macros in the following list to be defined appropriately for your platform. 

Example definitions can be found in the  file that was provided with your deliveryipport.h

htonl

htons

ntohl

ntohs

TRUE

FALSE

NULL

Memory Allocation

The DHCP server code allocates and frees memory blocks dynamically as it runs. It uses the macros listed 

below to do this. If your target system supports standard C  and , the macros map calloc() free()

directly as follows:

/* map malloc and free to system calls */

#define DHCP_ALLOC(size)   calloc(1, size)   /* DHCP header alloc/free */

#define DHCP_FREE(ptr)     free(ptr)

#define DHPOOL_ALLOC(size) calloc(1, size)   /* DHCP free pool list alloc/free */

#define DHPOOL_FREE(ptr)   free(ptr)

#define DHENT_ALLOC(size)  calloc(1, size)   /* DHCP entry list alloc/free */

#define DHENT_FREE(ptr)    free(ptr)

Many RTOS systems do not use calloc due to performance issues. Generally, they use a system which 

supports allocations of fixed size "partitions" (blocks) instead. The macros above are designed to support 

this - each of the  macros only allocates a single size. Thus the macros can be mapped to a call to _ALLOC

allocate the next largest partition size.

Debugging Aids

dtrap() is a macro called by the DHCP code whenever it detects a situation which should not be 

occurring. The intention is for the  routine or macro to try to trap to whatever debugger may be in dtrap()

use by the programmer. Think of it as an embedded break point. For most Intel x86 processor debuggers, 

this can be done with an int 3 opcode. The macro below is one such an example:

#define dtrap();   _asm{ int 3 }

The stack code will generally continue executing after a , but it usually indicates that something is dtrap()

wrong with the port. NO PRODUCT BASED ON THIS CODE SHOULD BE SHIPPED UNTIL THE CAUSES 

OF ALL CALLS TO  HAVE BEEN ELIMINATED! When it comes time to ship code,  can dtrap() dtrap()

be redefined to a null function to slightly reduce code size.



DHCP Server Technical Reference

Copyright HCC Embedded 2017 8 www.hcc-embedded.com

The next few primitives have the same function and syntax as . They have separate names so printf()

that they can have their output redirected or be completely disabled independently of each other. The first, 

, is used throughout the stack code to print warning messages when something seems to be dprintf()

wrong. This should be mapped to a debugging console or log during development, and generally ifdefed 

away for FCS. The  call is for printing statistical and debug information from the DHCP gio_printf()

"menu" functions. These will certainly be useful during product development, and depending on the nature 

of the product may be needed in the end user's release.

Features and Options

The DHCP server can optionally read a standard UNIX-like bootptab file and use it to initialize entries in the 

DHCP address pool. This is provided for backward compatibility with BOOTP. This feature requires access 

to a conventional file system via the standard C calls ,  and fclose(). If you are designing fopen() fgets()

a DHCP server for use with older UNIX workstations, you should try to include this feature. To do this, 

 should contain this definition:dhcpport.h

#define BOOTPTAB 1 /* will try to read a BSD bootptab file */



DHCP Server Technical Reference

Copyright HCC Embedded 2017 9 www.hcc-embedded.com

2.2 dhcpport.c - The glue Layer

The reference port the files  and  contain the routines that map the generic dhs_port.c dhs_file.c

service requests DHCP makes to specific services your target system provides. These may need to be 

implemented as minimal layer of C code.

UDP Hooks

Usually the most complex part of the glue layers is the network interface. DHCP needs to send and receive 

packets via the UDP protocol. If you are using InterNiche's lightweight API or a standard "Sockets" interface, 

sample  files are provided which do most of the work for you. Otherwise, you will need to dhcpport.c

implement the routines described in . These are summarized below:User Provided Functions

/* dhcp server's per-port utility for sending datagrams */

int dhs_udp_send(int iface, void * outbuf, int outlen);

 

/* portable dhcp server received packet handler */

int dhs_upcall(PACKET pkt, void *data, struct sockaddr_in *sin);

 

This callback in  calls the portable function  in dhcpsvr.c.dhs_port.c dhs_receeive()

Timers and Multitasking

A DHCP server only needs to get CPU time upon two events, each of which is handled by a callback 

routine. The events are an arriving DHCP packet, and the once-per-second timer. The arriving DHCP 

packets are processed in . The once-per-second timer is implemented by calling dhcp_receive()

 once a second - the code to initialize this timer may be part of dhcpport.c.dhcp_timeisup()

The other aspect of multitasking is to protect sensitive structures from being corrupted by code re-entry. 

This is accomplished by two macros which protect critical sections of code: LOCK_NET_RESOURCE

 and . These MACROs are defined in osport.h. Their (DHS_RESID) UNLOCK_NET_RESOURCE(DHS_RESID)

implementation is highly port-specific. In the example port, they are mapped to the functions  tk_res_lock

and  in misclib/task.c.tk_res_unlock



DHCP Server Technical Reference

Copyright HCC Embedded 2017 10 www.hcc-embedded.com

2.3 The DHCP Database

The DHCP Server requires a database containing the addresses and configuration parameters that will be 

given to clients when they make DHCP requests. The database consists of:

Address 

pools:

Ranges of addresses that can be assigned to clients

Interface 

defaults:

Configuration parameters to be assigned to client requests received on a specific 

interface.

Client 

Table:

A table of specific addresses and/or configuration parameters to be given to specific 

clients based on their client ID.

The DHCP data items supported by the client table and interface defaults are:

char name[DHS_MAX_HOSTNAME];   /* String for name */

ip_addr ipaddr;    /* client's assigned IP address */

ip_addr snmask;    /* client's assigned subnet mask */

ip_addr gwaddr;    /* client's assigned default gateway */

ip_addr dnsaddr;   /* Domain Name server */

char clientId[DHS_MAX_CLIENTID]; /* usually client's hardware address */

unshort  type;     /* type of this entry, see DHT_ defines in dhcpsvr.h */

unshort  status;   /*status of this entry, see DHT_ defines in dhcpsvr.h */

uint32_t lease;    /* dual use: lease period or when offer will timeout*/

 

Note: The  and  parameters are always stored in network byte order. Other parameters such snmask address

as the  "lease" are stored in host byte order and must be converted by network/host macros uint32_t

when they are moved between the network and memory.

Most of these fields should be familiar to programmers with some exposure to TCP/IP networks, however 

the clientId field deserves some explanation. This field is the unique ID which the DHCP server will use to 

track each client as it asks for and receives an IP address and configuration. On old BOOTP systems this 

was always the Ethernet (or token ring) MAC address, since this was always unique. This tradition has 

generally been carried forward to DHCP, and if you are using DHCP over Ethernet or token ring, then using 

MAC address as client ID is by far the simplest way to go. The DHCP clients will determine the size of this 

field, and on these media it will always be six since both MAC addresses are six bytes in length. However 

since DHCP may be used over PPP and other address-less type links, there may be cases where the 

clientId field will not be six bytes in length. The define  is used because the size my DHS_MAX_CLIENTID

vary between interfaces on a single system. If you implement a server which will use an unusual clientId 

size, be sure to modify the default value to the size your media will be using.



DHCP Server Technical Reference

Copyright HCC Embedded 2017 11 www.hcc-embedded.com

Database Initialization

The database could be created/initialized by a number of methods: hardcoded at compile time, set at 

initialization via a script, or some other port-specific implementation such as being read and parsed from a 

configuration file.

The example port is based primarily on script files that are read at initialization time. Database initialization 

moves in three levels, from the more generic to the specific. At each level, the defaults are used unless they 

are modified by more specific commands. The top level consists of generic compile-time defaults for 

parameters. These are expected to be modified at run-time by per-interface default parameters and address 

pool configurations. Finally there is a command to set individual configurations that will be given to specific 

clients based on their client-id.

dhs_port.h

dhs_port.h contains a set of defines that limit the maximum sizes of fields and arrays, such as:

DHS_MAX_IFACES Maximum number of  interfaces that can be configuredDHCPSVR

DHS_MAX_DOM_NAME Maximum domain-name size that can be configured.

dhs_port.h contains the definition of . This primarily consists of fields containing struct dhs_client

the parameters that will be given to clients with each DHCP Request. You may want to add fields to this 

structure or to save space by removing fields that will not be used by your DHCP Server implementation.

dhs_port.h also contains default values for client parameters. These will be given out with the DHCP 

Request, unless they are modified by the more specific run-time commands listed in the next sections.

Script commands

At the second level, script commands are used to set per-interface default parameters and pools of IP 

addresses that may be assigned. The default parameters that will be assigned for each interface can be set 

at run-time via a script or set of commands. At a minimum the system must be told to use the default 

parameters for the interface by the command, " ", where 'X' represents an interface dhs_ifcfg -i X

number. Any additional parameters provided with this command will over-ride any previous values for these 

parameters.

In the demo implementation, there are no defaults for address pools. At least one address pool must be 

configured at run-time via one or more " " commands.dhs_addrpool

Finally, when the client ID is known for clients that will be requesting DHCP configuration, specific 

configurations can be defined for each client ID. Clients not given a specific configuration will be given the 

parameters for the interface and an address from the range of addresses in the address pool[s] for the 

interface.

The following is an example of a script file:



DHCP Server Technical Reference

Copyright HCC Embedded 2017 12 www.hcc-embedded.com

# Assign the compile time default parameters to clients on this interface

dhs_ifcfg -i 1

 

# Assign a specific gateway and domain name to clients on this interface.

# (Use compile-time default parameters for the rest)

dhs_ifcfg -i 2 -g 192.168.0.1 -n mydomain

 

# Define a pool of address that can be assigned on any interface

dhs_addrpool -l 192.168.0.2 -h 192-168.5.254 -s 255.255.0.0

 

# Give the client with the specified client ID an infinite lease on the

# lowest address in the pool */

dhs_client -c 00:08:f3:2d:04: 40 -a 192.168.0.2 -l 0xFFFFFFFF

The script file may contain any number of commands. It is normally read at init time, but one or more 

individual commands may be issued at any time.

dhcpsvr_file

All run-time configuration information is stored in RAM. Each time a client configuration is added to the in-

RAM client table, it is also written to the data-base file, " ". This is done because it is dhcpsvr_file

normally desirable for the DHCP server to try to give a client the same IP address and configuration each 

time it makes a DHCP request. The  is a binary file. Each client entry is made by simply by dhcpsvr_file

writing out the struct dhs_client for that client.

The dhcpsvr_file is read at initialization time before the script commands are called. A dhs_client command 

will overwrite any existing fields obtained for that client from the , and the new values will be dhcpsvr_file

saved in the file.

2.4 Testing

Once your  file is set up and your glue layers are coded, compiled, and linked, you are ready dhcpport.h

to test your server. The steps for a basic test are simple: start your DHCP server, then reboot any DHCP 

client machine. The two machines should complete a 4 packet exchange as described in the DHCP RFCs. 

If you have replaced the  file IO code with your own, you should also test to ensure that both dhs_file.c

per-client data and host data are being set properly.

In any case you should now have a working DHCP server.



DHCP Server Technical Reference

Copyright HCC Embedded 2017 13 www.hcc-embedded.com

1.  

2.  

3.  

3 Troubleshooting
If your implementation of the DHCP server has problems, there are several techniques you can use to track 

down the problems. The problems generally fall into two categories: connecting the server to UDP and 

keeping the database information accurate.

3.1 UDP Transport

Although InterNiche provides code for most common UDP APIs, there are still a variety of things which can 

go wrong. Since the DHCP server always operates by responding to client requests, the first problem you 

are likely to encounter is the inability to receive packets. If you have tried rebooting a DHCP client and the 

server has not responded, you will want to make sure the DHCP server actually received the packet from 

the client. The easiest way is to use the dhs netstat command in the DHCP server menus - it provides 

counters for all types of packets received and sent. If these are all zero, this tells you to go back and debug 

your UDP "listen" and receive code.

If the menu counters indicate a discover packet was received and an offer packet was sent, but no request 

was received, it is possible your UDP send has problems - the server thinks it sent the packet to the UDP 

layer, but UDP never got it onto the network. Debugging your  code is then indicated.dhs_udp_send()

The DHCP server, unlike many networking protocols, is quite amenable to source level debugging with 

breakpoints. Since each DHCP packet is sent from the server as a reply to a client packet, setting a 

breakpoint on  will allow you to trace the entire DHCP transaction all the way through to dhcp_receive()

the sending of the response.

In all cases, a Packet Analyzer is an invaluable tool for debugging this sort of problem. An analyzer will 

capture on packets on the LAN to which it is attached, and save them for later review. Most support filters, 

so you can set them to capture only the packets of interest - in this case BOOTP/DHCP packets.

3.2 Database Debugging

If the DHCP packets are being exchanged between client and server, but the IP configuration information is 

not what you expected, there are some simple techniques you can use to find the problem:

Double check your database files. Incorrectly entered MAC addresses are a common source of 

trouble in per-client setups. The clients will not be found in the database and will be assigned default 

values instead.

Make sure the files are being read into the DHCP server's internal structures correctly. The dhs 

 command can be used to display information even for clients which have not generated a netstat

request yet. If the IP configuration information is not correct here, it will not be correct on the net.

Use a packet analyzer to check the information in the reply packets coming out of the server. If the 

packets do not reflect the data revealed by  then there is an encoding problem of dhs netstat

some kind. The most common cause of this is "endian" issues.



DHCP Server Technical Reference

Copyright HCC Embedded 2017 14 www.hcc-embedded.com

4 The DHCP User Menu

4.1 dhs_addrpool

Command Name

dhs_addrpool - configure an address pool

Syntax

dhs_addrpool [-i <iface>] {-l <low addr> -h <high addr> -s <subnetmask>}

Parameters

  Command without address parameters displays the current address pools for all or the 

specified interface

-i Command applies to the specified interface

-l lowest IP address in pool

-h highest IP address in pool

-s Subnet mask in IP addr format (dotted notation)

Description

This command is used to configure an address pool

Notes/Status

In order to configure an address pool, the ,  and  options must all be used.'-l' '-h' '-s'

If the  option is used, then the addresses in the pool will be given only to clients on the '-i'

specified interface. The specified interface must already have a default configuration

If the  option is not used, then at least one interface must already have a default '-i'

configuration

Location

This command is provided by the  module when  is defined.DHCP Server DHCP_SERVER



DHCP Server Technical Reference

Copyright HCC Embedded 2017 15 www.hcc-embedded.com

4.2 dhs_client

Command Name

dhs_client - Configure parameters to be given to a specific DHCP client 

Syntax

dhs_client -c <Client ID> [-a <IP addr>] [-i <iface>] [-d <DNS addr>] [-g 

<gw addr>] [-h <host name>] [-l <lease>] [-s <subnetmask>]

Parameters

-c string: usually the MAC address (include colons) of the client to be given these parameters

-a IP address to be given to this client

-i Interface number. Start with the default parameters for this interface. These may be modified 

by the other parameters

-d IP address of DNS server

-g IP address of gateway

-h Host name to be given to this client

-l Integer: lease in seconds

-s Subnet mask in IP addr format (dotted notation)

Description

This command is used to configure the parameters be given to a specific DHCP client when it makes a 

DHCP Request. A client configuration is saved both in an in-RAM client table and in a client table 

saved in persistent storage

Notes/Status

The  parameter is required.'-c'

Location

This command is provided by the  module when  is defined.DHCP Server DHCP_SERVER



DHCP Server Technical Reference

Copyright HCC Embedded 2017 16 www.hcc-embedded.com

4.3 dhs_enable

Command Name

dhs_enable - Enable/Disable DHCP Server

Syntax

dhs_enable -d | -e 

Parameters

-d Disable the DHCP Server

-e Enable the DHCP Server

Description

This command is used to enable/disable the DHCP Server.

Notes/Status

The DHCP Server cannot be enabled until at least one interface has been give default 

parameters and at least one address pool has been configured. Be default, it will be enabled as 

soon as this condition is met

Location

This command is provided by the  module when  is defined.DHCP Server DHCP_SERVER



DHCP Server Technical Reference

Copyright HCC Embedded 2017 17 www.hcc-embedded.com

4.4 dhs_ifcfg

Command Name

dhs_ifcfg - configure default parameters to be delivered with addresses on 

this interface

Syntax

dhs_ifcfg {-i <iface> [-d <dns addr>] [-e <yes/no>] [-g <gwaddr>]    

          [-l <lease name>] [-n <domain name>]

          [-o <mask>] [-s <subnetmask>]}

Parameters

  dhs_ifcfg without parameters displays the current default paramters for all interfaces

-i Interface number

-d IP address of DNS server

-e string: enable "yes" or "no"

-g IP address of gateway

-l Default lease in seconds

-n Domain name

-o hexidecimal integer. Mask of acceptable options

-s Subnet mask in IP addr format (dotted notation)

Description

This command is used to configure the default parameters that will be included with each DHCP 

address given out on this interface.

Notes/Status

The file "dhs_port.h" contains system defaults for all parameters except .'-i'

At least one interface must be configured before the DHCP server will be enabled. The minimum 

command is dhs_ifcfg -i <iface>

At lease one address pool must also be configured before the DHCP Server will be enabled.

Location

This command is provided by the  module when  is defined.DHCP Server DHCP_SERVER



DHCP Server Technical Reference

Copyright HCC Embedded 2017 18 www.hcc-embedded.com

4.5 dhs_netstat

Command Name

dhs_netstat - Display DHCP Server statistics and parameters

Syntax

dhs_netstat [-d] [-e <index>] [-l] [-p]

Parameters

  Command without parameters displays statistics for the DHCP Server

-d List default parameters for all interfaces

-e Integer index of client entry. List parameters to be given to the specifed client

-l List addresses that have been assigned

-p Display free address pools

Description

This command is used to display DHCP Server statistics or to display the specified parameter list[s].

Notes/Status

The index needed with the  option can be obtained from the list provided by a previous dhs '-e'

netstat command that used  option.'-l'

Location

This command is provided by the  module when  is defined.DHCP Server DHCP_SERVER



DHCP Server Technical Reference

Copyright HCC Embedded 2017 19 www.hcc-embedded.com

5 User Provided Functions
The functions described in this section must be provided by the porting programmer as part of the porting 

the InterNiche DHCP server. The InterNiche provided reference port can be referenced for examples. If you 

are using the InterNiche IP Stack, many of these functions are already provided in it.

In the default port these functions are either mapped directly to system calls via macros in  or dhcpport.h

implemented in .dhcpport.c

5.1 UDP Network API Layer

These three functions are those which allow DHCP to send/receive UDP datagrams. Implementations are 

provided for standard Sockets and InterNiche's lightweight UDP API. The first few are calls the DHCP 

server code makes to the API layer code, whereas  and  are DHCP dhcp_receive() dhcp_timeisup()

server internal functions which needs to be called from the UDP glue layer whenever a DHCP server packet 

is received.

Name

dhs_udp_send()

Syntax

int dh_udp_send(int iface, void * outbuf, int outlen);

Parameters

iface the index for the interface the packet is to be sent on.

outbuf the data buffer containing the UDP header

outlen length of the outbuf, usually BOOTP or DHCP header structure size.

Description

Broadcast a UDP datagram on the interface indicated. Buffer with UDP data to send and a length are 

passed.

Returns

Returns 0 if OK, else non-zero error.



DHCP Server Technical Reference

Copyright HCC Embedded 2017 20 www.hcc-embedded.com

5.2 UDP Callback Function

Name

dhs_upcall()

Syntax

dhs_upcall(PACKET pkt, void *data, struct sockaddr_in *sin)

Parameters

pkt The PACKET strucvture

data pointer to the start of the BOOTP/DHCP header (UDP data)

sin Pointer to the socket address structure.

Description

This is called from the per-port protocol stack hooks whenever the UDP listen to the DHCP/BOOTP 

server port has received a DHCP packet. Length and interface have already been checked.

Returns

This routine returns 0 if OK, -1 if packet has an error.



DHCP Server Technical Reference

Copyright HCC Embedded 2017 21 www.hcc-embedded.com

5.3 Timer Callback Function

Name

dhs_timeisup()

Syntax

void dhs_timeisup(void);

Parameters

None

Description

The DHCP clock tick. This should be called once a second by the host system. It allows the DHCP 

server to track lease time-outs and recycle unclaimed IP addresses.

Returns

Nothing.


	Overview
	Terms and Conventions
	What DHCP Does
	BOOTP
	Porting
	Requirements
	Operating System Requirements


	Step by Step Porting Guide
	Source Files List
	Standard Macros and Definitions
	Memory Allocation
	Debugging Aids
	Features and Options

	dhcpport.c - The glue Layer
	UDP Hooks
	Timers and Multitasking

	The DHCP Database
	Database Initialization
	dhs_port.h
	Script commands

	dhcpsvr_file

	Testing

	Troubleshooting
	UDP Transport
	Database Debugging

	The DHCP User Menu
	dhs_addrpool
	dhs_client
	dhs_enable
	dhs_ifcfg
	dhs_netstat

	User Provided Functions
	UDP Network API Layer
	UDP Callback Function
	Timer Callback Function


