D Hcc Embedded Encryption Manager User Guide

Embedded Encryption
Manager User Guide

Version 1.60 BETA

For use with Embedded Encryption Manager versions
1.20 and above

Date: 18-Aug-2017 15:36

All rights reserved. This document and the associated software are the sole property of HCC
Embedded. Reproduction or duplication by any means of any portion of this document without the
prior written consent of HCC Embedded is expressly forbidden.

HCC Embedded reserves the right to make changes to this document and to the related software at
any time and without notice. The information in this document has been carefully checked for its
accuracy; however, HCC Embedded makes no warranty relating to the correctness of this document.

Copyright HCC Embedded 2017 1 www.hcc-embedded.com

Embedded Encryption Manager User Guide

Table of Contents

System Overview 4
Introduction 4
Feature Check 5
Packages and Documents 6

Packages 6
Documents 6
Change History 7

Source File List 8
API Header File 8
Configuration File 8
System Files 8
Version File 8

Configuration Options 9

Algorithm and User Module Overview 10
Driver Development Rules 10
Algorithm Example 11

Pseudo code of algorithm functions 11
User Module Example 13
Initialization Pseudocode 13
User Module Pseudocode 14

Application Programming Interface 15

Module Management 15
enc_init 16
enc_start 17
enc_stop 18
enc_delete 19
enc_register 20
enc_deregister 21

Algorithm Management 22
enc_driver_init 23
enc_driver_start 24
enc_driver_stop 25
enc_driver_delete 26
enc_driver_alloc 27
enc_driver_free 28
enc_driver_encrypt 29
enc_driver_decrypt 30
enc_driver_hash 31
enc_remove_envelop 32
enc_get_random_hytes 33

Error Codes 34

Types and Definitions 35

Copyright HCC Embedded 2017

www.hcc-embedded.com

Embedded Encryption Manager User Guide

t_enc_drv_init_fn 35
t_enc_driver_fn 36
t_enc_cypher_data 37
t_enc_reg 37
t_big_num 38
Integration 39
OS Abstraction Layer 39
PSP Porting 40

Copyright HCC Embedded 2017 3 www.hcc-embedded.com

Embedded Encryption Manager User Guide

1 System Overview

1.1 Introduction

This guide is for those who want to implement the HCC Embedded Encryption Manager™ to manage the

interface to encryption and hash algorithms.

The Embedded Encryption Manager (EEM) has two interfaces:

1. Used to register encryption/hash algorithms, associating these with the EEM. Each algorithm has a
handle that is obtained during registration. The user requires this handle to use the algorithm; they
must pass this to the user module. The registered algorithms are stored in a table.

2. Used by user modules to access the registered algorithms. The algorithm user uses a standard set of
EEM API functions to access the algorithm. The user module initializes/starts/stops/deletes
algorithms by calling the appropriate functions. The EEM controls whether an algorithm is really
initialized/started/stopped/deleted when a user calls such a function. The EEM provides mutual
exclusion only for its internal data; execution of algorithm functions is not protected.

The system structure is shown below:

-
4

/

Encryption/Hash
algorithm

p

&

enc_driver_ir@

enc_driver_start
enc_driver_stop
Embedded enc_driver_delete

E ncrypti on enc_driver_alloc

enc_driver_free
Manager enc_driver_encrypt

enc_driver_decrypt

enc_driver_hash
J

A

2 2

(D

A

User module]

A fully developed user module should implement all the API functions shown above. A minimal
implementation of an algorithm should consist of the initialization function and one of the encryption

/decryption/hash functions.

Note: Although every attempt has been made to simplify the system’s use, you need a good
understanding of the requirements of the systems you are designing in order to obtain the maximum
practical benefits. HCC Embedded offers hardware and firmware development consultancy to help you

implement your system.

The following encryption algorithms are supported:

® Advanced Encryption Standard (AES).

® Digital Signature Standard (DSS). When DSS uses Elliptic Curve Cryptography (ECC) it is termed
Elliptic Curve Digital Signature Algorithm (ECDSA).
® Ephemeral Diffie-Hellman (EDH) algorithm. When this uses ECC it is termed Elliptic Curve Diffie—

Hellman (ECDH).

® Rivest, Shamir and Adelman (RSA) signature algorithm.

Copyright HCC Embedded 2017

www.hcc-embedded.com

Embedded Encryption Manager User Guide

® Triple Data Encryption Standard (3DES).
The following hash algorithms are supported:

®* Message Digest Algorithm 5 (MD5) and MD4.

® Secure Hash Algorithm (SHA-1, SHA-1 HMAC, SHA1-HMAC-96, SHA-256, SHA-384 and SHA-512).
(HMAC stands for Hash Message Authentication Code.)

® Tiger/128, Tiger/160, Tiger/192 and Tiger/192 HMAC.

1.2 Feature Check
The main features of the EEM are the following:

® Conforms to the HCC Advanced Embedded Framework.

® Fully MISRA-compliant.

® Test suite provides complete MC/DC 100% code coverage. (Order this separately.)

® Designed for integration with both RTOS and non-RTOS based systems.

® Compatible with all commonly used encryption/hash algorithms.

® Supports all HCC modules that allow encryption.

® Compatible with HCC's software encryption implementations of a wide range of standard use
algorithms.

® Compatible with HCC hardware-specific algorithm implementations.

Copyright HCC Embedded 2017 5 www.hcc-embedded.com

Embedded Encryption Manager User Guide

1.3 Packages and Documents

Packages

The table below lists the packages that you need in order to use this module.

Package Description

hcc_base_docs This contains the two guides that will help you get started.
enc_base The EEM package.

psp_template_base The base Platform Support Package (PSP).
Documents

For an overview of HCC verifiable embedded network encryption, see Product Information on the main HCC
website.

Readers should note the points in the HCC Documentation Guidelines on the HCC documentation website.
HCC Firmware Quick Start Guide

This document describes how to install packages provided by HCC in the target development environment.
Also follow the Quick Start Guide when HCC provides package updates.

HCC Source Tree Guide

This document describes the HCC source tree. It gives an overview of the system to make clear the logic
behind its organization.

HCC Embedded Encryption Manager User Guide
This is this document.
HCC Algorithm User Guides

There is a separate document for each encryption/hash algorithm. For example, the Triple Data Encryption
Standard User Guide describes the 3DES module.

Copyright HCC Embedded 2017 6 www.hcc-embedded.com

https://www.hcc-embedded.com/embedded-systems-software-products/tcp-stack-networking/secure-embedded-network-communication
https://doc.hcc-embedded.com/display/HCCDocRoot/HCC+Documentation+Guidelines
https://doc.hcc-embedded.com/display/DT/Firmware+Quick+Start+Guide
https://doc.hcc-embedded.com/display/ENCDES/Triple+Data+Encryption+Standard+User+Guide
https://doc.hcc-embedded.com/display/ENCDES/Triple+Data+Encryption+Standard+User+Guide

Embedded Encryption Manager User Guide

1.4 Change History

This section describes past changes to this manual.

®* To download earlier manuals, see Archive: EEM User Guide.
® For the history of changes made to the package code itself, see History: enc_base.

The current version of this manual is 1.60 BETA. The full list of versions is as follows:

Manual
version

1.60B

1.50B

1.40B

1.30B

1.20B

1.10B

1.00B

Date

2017-08-18

2017-06-15

2017-04-05

2017-01-10

2016-03-18

2016-01-29

2015-02-12

Software
version

1.20

1.20

1.18

1.17

1.08

1.06

1.05

Reason for change

Updated Packages list.

New format Change History.

Change to t_enc_cypher_data structure
Added lists of functions to API headers.
Change to configuration file.

Big number math functions removed.

First online version.

Copyright HCC Embedded 2017

7 www.hcc-embedded.com

https://doc.hcc-embedded.com/display/HCCDocRoot/Archive%3A+EEM+User+Guide
https://doc.hcc-embedded.com/display/HCCDocRoot/History%3A+enc_base

Embedded Encryption Manager User Guide

2 Source File List

This section describes all the source code files included in the system. These files follow the HCC
Embedded standard source tree system, described in the HCC Source Tree Guide. All references to file
pathnames refer to locations within this standard source tree, not within the package you initially receive.

Note: Do not modify any files except the configuration file.

2.1 API Header File

The file src/api/api_enc.h should be included by any application using the system. This is the only file that
should be included by an application using this module. For details of the functions, see Application
Programming Interface.

2.2 Configuration File

The file src/config/config_enc.h contains the configurable parameters of the system. Configure these as
required. For details of these options, see Configuration Options.

2.3 System Files

These files are in the directory src/enc. These files should only be modified by HCC.

File Description

corelenc.c EEM core elements.
core/lenc_common.c EEM core common elements.
software/big_num/big_num.c Big number arithmetic.

2.4 Version File

The file src/version/ver_enc.h contains the version number of the EEM. This version number is checked
by all modules that use the EEM to ensure system consistency over upgrades.

Copyright HCC Embedded 2017 8 www.hcc-embedded.com

https://doc.hcc-embedded.com/display/STQSG/Source+Tree+Guide

Embedded Encryption Manager User Guide

3 Configuration Options

Set the configuration options listed below in the file src/config/config_enc.h.
ENC_DRIVERTAB_SIZE

The maximum size of the table of registered encryption/hash algorithms. The maximum possible value is
1024. The default is 1.

BN_STACK_BUFFERS_CNT

The number of big number library buffers for allocating data for internal operations. The default is 1.
SBN_BUF_LEN

The maximum size of an input big number in bytes. The default is 256.
READ_CHECK_ALIGNMENT

Use this to enable verification of the alignment of an address before read attempts in cases where the
address alignment is not guaranteed (that is, in the bn_shr() and bn_shl() functions). Use this if the target
architecture does not support read attempts from non-aligned memory addresses.

There are two settings:

® 1 (the default) — enables address verification before read attempts in appropriate cases.
® (0 - disables address verification. Select this if the address alignment is guaranteed; the program will
work faster.

Copyright HCC Embedded 2017 9 www.hcc-embedded.com

Embedded Encryption Manager User Guide

4 Algorithm and User Module Overview

4.1 Driver Development Rules
Follow these rules when developing an algorithm:

* A fully developed algorithm must implement all the functions specified by the ¢ enc driver fn
structure. A minimal implementation of a driver should contain the initialization function and one
encryption/decryption/hash function.

® The initialization function should be of type t enc drv _init fn. This function is used by the EEM to
obtain the structure containing pointers to encryption functions. The initialization function should be
the only function visible outside of the source file. All other functions should be declared as static.
The initialization function should not call any encryption module functions.

® The algorithm is responsible for implementing mutual exclusion protection, if this is required. If a
function is not implemented, its pointer in t_enc_driver_fn must be cleared.

® The algorithm must check that all its instances have been freed before it stops. If any instances are
not freed, the enc_stop() function returns the error ENC_DRIVER_USED_ ERR.

¢ Stateful algorithms should return a final computation value when calling enc_driver_free(). Users of
the EEM should assume that all drivers are stateful.

Copyright HCC Embedded 2017 10 www.hcc-embedded.com

Embedded Encryption Manager User Guide

4.2 Algorithm Example

You must implement the functions specified in the t_enc_driver_fn structure and the enc_driver_init()
function. The enc_driver_init() function is called by the EEM to obtain the t_enc_driver_f structure. Not all
functions need to be implemented. If a function is not implemented, clear its pointer in the t_enc_driver_f
structure.

Pseudo code of algorithm functions

static const t_enc_driver_fn g_ny_encdrv_fn =
{

ny_encdrv_init

, NULL /* The driver does not need starting */

, my_encdrv_stop

, ny_encdrv_del ete

, my_encdrv_alloc

, my_encdrv_free

, ny_encdrv_encrypt,

, ny_encdrv_decrypt,

, my_encdrv_hash

t_enc_ret ny_encdrv_init_fn(t_enc_driver_fn * * const pp_encdriver)
{

pp_encdriver = &_mny_encdrv_fn

return ENC_SUCCESS

t_enc_ret ny_encdrv_encrypt(const t_enc_ins_hdl inst_hd
, const uint8_t * const p_in, uintl6_t in_len
, const t_enc_cypher_data * const p_cypher_data
, uint8_t * const p_out, uintl6_t * p_out_len)

{
hash = my_calc_hash (p_in, in_len);
nmy_encypt _mask(p_in, in_len, p_cypher_data->p_ecd_key, p_out, p_out_length);
my_encypt _add_si gn(hash, p_out, p_out_length);
return ENC_SUCCESS
}

t_enc_ret ny_encdrv_decrypt(const t_enc_ins_hdl inst_hd
, const uint8_t * const p_in, uint1l6_t in_len
, const t_enc_cypher_data * const p_cypher_data
, uint8_t * const p_out, uintl6_t * p_out_len)

t_enc_ret ret_val

ret _val = ENC_FORVAT_ERR;

hash = my_encypt _get_sign(p_in, in_length);

nmy_renmove_sign(p_in, in_length, p_out, p_out_length)

my_decypt(p_in, in_len, p_cypher_data->p_ecd key, p_out, p_out_length);
hash_val = ny_cal c_hash(p_out, p_out_len[0]);

if (hash_val == hash)

{

Copyright HCC Embedded 2017 11 www.hcc-embedded.com

Embedded Encryption Manager User Guide

ret _val = ENC_SUCCESS;
}

return ret_val;

t_enc_ret ny_encdrv_hash(const t_enc_ins_hdl inst_hdl
, const void * const p_data, uintl6_t data_len
, void * p_out_buf, uintl6_t * p_out_len)

{
my_swap_data(p_in, in_len, p_out, p_out_len);
my_cal c_hash(p_out, p_out_len);
return ENC_SUCCESS;
}
t_enc_ret ny_encdrv_init()
{
/1 meke initialization
}
t_enc_ret ny_encdrv_delete()
{
/'l meke deinitialization
}
t_enc_ret ny_encdrv_alloc(t_enc_ins_hdl * p_ins_hdl)
{
* p_ins_hdl = Alloc_instance();
}
t_enc_ret ny_encdrv_free(const t_enc_ins_hdl ins_hdl)
{
Free_l nstance(ins_hdl);
}
t_enc_ret ny_encdrv_stop()
{
/| Check whether all its instances were free
for(idx = 0; idx < I NSTANCE_ NUMBER, idx++)
{
if (inst[idx] !'= FREE)
return ENC_DRI VER USED ERR;
}
return ENC_SUCCESS;
}

Copyright HCC Embedded 2017 12 www.hcc-embedded.com

Embedded Encryption Manager User Guide

4.3 User Module Example

This example shows how to use the encryption library. It assumes that my_mod is the name of a user
module that uses AES encryption. The user implements a function that registers the algorithm handler in
their module.

Before using this code, initialize the EEM. This is usually done within the main function. The user module
should call enc_driver_init() and enc_driver_start() to initialize and start the algorithm, respectively.

The following example code is only a suggestion of how the algorithm should be initialized and started.

Initialization Pseudocode

void main (void)

{
t_enc_ret ret_val;
ret_val = enc_init();
if (ret_val == ENC_SUCCESS)
{
ret_val = ny_nod_init();
}
if (ret_val == ENC_SUCCESS)
{
ret_val = enc_start();
}
if (ret_val == MY_MOD_SUCCESS)
{
ret_val = enc_register(aes_drv_init, & _enc_aes_hdl);
}
if (ret_val == MY_MOD SUCCESS)
{
ret_val = enc_driver_init(g_enc_aes_hdl);
}
if (ret_val == ENC_SUCCESS)
{
ret_val = ny_nod_register(g_enc_aes_hdl);
}
if (ret_val == ENC_SUCCESS)
{

ret_val = ny_nod_start();

}
other initializations

} /* main ¥/

Copyright HCC Embedded 2017 13 www.hcc-embedded.com

Embedded Encryption Manager User Guide

User Module Pseudocode

int ny_nod_init()

{
g_my_encypher _data.p_ecd_init_vect = g_ny_init_vect;
g_ny_encypher _data. ecd_init_vect_size = MY_I NI T_VECTOR Sl ZE;
g_ny_encypher _data. p_ecd_key = g_my_aes_key;
g_ny_encypher _dat a. ecd_key_si ze = MY_AES_KEY_SI ZE;
return MY_MOD_SUCCESS;

}

int ny_nod_register(drv_hdl)

{
g_ny_aes_hdl = drv_hdl;
return My_MOD_SUCCESS;

}

int ny_nod_start ()

{
enc_driver_start(g_ny_aes_hdl);
return My_MOD_SUCCESS;

}

int my_mod_stop()

{
enc_driver_stop(g_ny_aes_hdl);
return My_MOD_SUCCESS;

}

int ny_nod_encrypt(uint8_t p_buf, uintl6_t length, uint8_t p_out,uint8_t out_length)

enc_driver_alloc(g_ny_aes_hdl, g _my_aes_inst); /* Assune that driver is stateful */

enc_driver_encrypt(g_ny_eas_hdl, g_ny_aes_inst, p_buf, length, & ny_encypher_data, p_out,
out _length);

enc_driver_free(g_ny_aes_inst, p_out2, out_length2); /* Concatenate p_out with p_out2 */

return My_MOD_SUCCESS;

Copyright HCC Embedded 2017 14 www.hcc-embedded.com

Embedded Encryption Manager User Guide

5 Application Programming Interface

This section describes all the Application Programming Interface (API) functions.

5.1 Module Management

These functions control the EEM itself. Call these as required before any of the algorithm functions.

Note: You must call enc_init() and then enc_start() before calling enc_register().

Function Description

enc_init() Initializes the EEM and allocates the required resources.
enc_start() Starts the EEM.

enc_stop() Stops the EEM.

enc_delete() Deletes the EEM and releases the resources it used.
enc_register() Registers an encryption/hash algorithm. This adds it to the table of

registered algorithms.

enc_deregister() Deregisters an encryption/hash algorithm. This removes it from the
table of registered algorithms.

Copyright HCC Embedded 2017 15 www.hcc-embedded.com

Embedded Encryption Manager User Guide

enc_init

Use this function to initialize the EEM and allocate the required resources.

Note: You must call this function first.

Format

t_enc_ret enc_init (void)

Arguments

Argument

None.

Return Values

Return value Description
ENC_SUCCESS Successful execution.
ENC_INVALID_ERR Failed to obtain mutex.

Copyright HCC Embedded 2017 16 www.hcc-embedded.com

Embedded Encryption Manager User Guide

enc_start

Use this function to start the EEM.

Note: You must call enc_init() before this function.

Format

t_enc_ret enc_start (void)

Arguments

Argument

None.

Return values

Return value Description
ENC_SUCCESS Successful execution.
ENC_INVALID_ERR Module has not been initialized.

Copyright HCC Embedded 2017 17 www.hcc-embedded.com

Embedded Encryption Manager User Guide

enc_stop

Use this function to stop the EEM.
This stops all algorithms, even if a function is still using an algorithm.

Format

t_enc_ret enc_stop (void)

Arguments

Argument

None.

Return values

Return value Description

ENC_SUCCESS Successful execution.
ENC_INVALID_ERR The module had not been started.
ENC_DRIVERS REG_ERR An algorithm is still registered.

Copyright HCC Embedded 2017 18

www.hcc-embedded.com

Embedded Encryption Manager User Guide

enc_delete

Use this function to delete the EEM and release the associated resources.

Note: This function only works after enc_stop() has been called successfully.

Format

t_enc_ret enc_delete (void)

Arguments

Argument

None.

Return Values

Return value Description
ENC_SUCCESS Successful execution.
ENC_INVALID_ERR The module was not in initialized state.

Copyright HCC Embedded 2017 19 www.hcc-embedded.com

Embedded Encryption Manager User Guide

enc_register

Use this function to register an encryption/hash algorithm. This adds it to the table of registered algorithms.

The function returns the algorithm handle which can be used by a user module to encrypt/decrypt data or
calculate a hash value.

Note: You must call enc_start() before this function.

Format

t_enc_ret enc_register (
t_enc_drv_init_fn p_init_fun,

t_enc_ifc_hdl * p_ifc_hdl)
Arguments
Argument Description Type
p_init_fun The algorithm initialization function. t enc_drv_init_fn
p_ifc_hdl A pointer to the algorithm handle. t_enc_ifc_hdl *

Return Values

Return value Description

ENC_SUCCESS Successful execution.
ENC_ALREADY_REG_ERR The algorithm is already registered.
ENC_PARAM_ERR A parameter is NULL.

Else See Error Codes.

Copyright HCC Embedded 2017 20 www.hcc-embedded.com

Embedded Encryption Manager User Guide

enc_deregister

Use this function to deregister an encryption/hash algorithm. This removes it from the table of registered
algorithms.

You must call enc_driver_delete() before deregistering an algorithm.

Note: An algorithm which is being used by a user module cannot be deregistered.

Format

t_enc_ret enc_deregister (t_enc_ifc_hdl ifc_hdl)

Arguments
Argument Description Type
ifc_hdl The algorithm handle. t_enc_ifc_hdl

Return Values

Return value Description
ENC_SUCCESS Successful execution.
ENC_DRIVER_USED_ERR The algorithm is being used by a user module so cannot be

deregistered.
ENC_INV_HANDLER_ERR Invalid algorithm handle.

ENC_INVALID_ERR The module has not been started.

Copyright HCC Embedded 2017 21 www.hcc-embedded.com

Embedded Encryption Manager User Guide

5.2 Algorithm Management

Use these functions to manage and use encryption/hash algorithms.

Note: For full details of an algorithm's usage, check the implementation and its manual.

Function Description

enc_driver_init() Allocates resources for an algorithm.

enc_driver_start() Enables an algorithm.

enc_driver_stop() Disables an algorithm.

enc_driver_delete() Releases the resources associated with an algorithm.
enc_driver_alloc() Allocates an instance of the algorithm to use. This is needed in case

there are multiple users who need to use different instances of a
particular algorithm.

Some algorithms are stateless and this is not needed for these, but if
the algorithm has state (so the next call is dependent on the last) then
an instance has to be allocated.

enc_driver_free() Releases an algorithm instance.

enc_driver_encrypt() Encrypts input data.

enc_driver_decrypt() Decrypts input data.

enc_driver_hash() Calculates the hash value of the input data.
enc_remove_envelop() Obtains a pointer to the data field within the DER envelope by

removing the envelope.

enc_get_random_bytes() Fills the buffer with random values.

Copyright HCC Embedded 2017 22 www.hcc-embedded.com

Embedded Encryption Manager User Guide

enc_driver_init
Use this function to initialize an encryption/hash algorithm and allocate the required resources.

This function should generally be called by the system, but a user module that it is the only user of the EEM
can call it. In the latter case, call this function before starting the algorithm. If this function is called when the
algorithm has already been initialized by another user module, it returns an error code.

Note: You must call this function before the other algorithm management functions.

Format

t_enc_ret enc_driver_init(t_enc_ifc_hdl ifc_hdl)

Arguments
Argument Description Type
ifc_hdl The algorithm handle. t_enc_ifc_hdl

Return Values

Return value Description
ENC_SUCCESS Successful execution.
ENC_INVALID_ERR The module was not started or the algorithm has already been

initialized by another user module.

ENC_INV_HANDLER_ERR Invalid algorithm handle.

Copyright HCC Embedded 2017 23 www.hcc-embedded.com

Embedded Encryption Manager User Guide

enc_driver_start

Use this function to start an encryption/hash algorithm.
Call this function from the user module when it starts working with an algorithm.

If this function is called when an algorithm has already been started by another user module, it does not not
have any effect but does not generate an error code.

Note: You must call enc_driver_init() before this.

Format

t_enc_ret enc_driver_start(t_enc_ifc_hdl ifc_hdl)

Arguments
Argument Description Type
ifc_hdl The algorithm handle. t_enc_ifc_hdl

Return values

Return value Description
ENC_SUCCESS Successful execution.
ENC_INVALID_ERR The module was not started or the algorithm has already been

initialized by another user module.
ENC_INV_HANDLER_ERR Invalid algorithm handle.

ENC_DRIVER_NINIT_ERR The algorithm was not initialized.

Copyright HCC Embedded 2017 24 www.hcc-embedded.com

Embedded Encryption Manager User Guide

enc_driver_stop

Use this function to stop an encryption/hash algorithm. Call this from the user module when it does not need
an algorithm any more.

Note: The algorithm is stopped only if no other user module is still using it (that is, when all modules
using it have called this function). If the algorithm is being used by another instance, an error is
returned.

Format

t_enc_ret enc_driver_stop(t_enc_ifc_hdl ifc_hdl)

Arguments
Argument Description Type
ifc_hdl The algorithm handle. t_enc_ifc_hdl

Return values

Return value Description
ENC_SUCCESS Successful execution.
ENC_INVALID_ERR The module was not started.

ENC_DRIVER_NSTARTED_ERR The algorithm has not been started.

ENC_INV_HANDLER_ERR Invalid algorithm handle.

Copyright HCC Embedded 2017 25 www.hcc-embedded.com

Embedded Encryption Manager User Guide

enc_driver_delete

Use this function to delete a stopped encryption/hash algorithm and release the associated resources. Call
this from the user module when it is closing.

Note: The algorithm is deleted only if no other user module is still using it (that is, when all the modules
that used it have called this function).

Format

t_enc_ret enc_driver_delete(t_enc_ifc_hdl ifc_hdl)

Arguments
Argument Description Type
ifc_hdl The algorithm handle. t _enc_ifc_hdl

Return values

Return value Description

ENC_SUCCESS Successful execution.

ENC_INVALID_ERR The algorithm was not stopped or had not been initialized.
ENC_INV_HANDLER_ERR Invalid algorithm handle.

ENC_DRIVER_NINIT_ERR The algorithm was not initialized.
ENC_DRIVER_USED_ERR The algorithm is still in use.

Copyright HCC Embedded 2017 26 www.hcc-embedded.com

Embedded Encryption Manager User Guide

enc_driver_alloc

Use this function to obtain an encryption/hash algorithm instance for the current user module.

This allocates an instance of the algorithm to use. This is needed in case there are multiple users who need
to use different instances of a particular algorithm.

Some algorithms are stateless and this is not needed for these, but if it has state (so the next call is
dependent on the last) then an instance has to be allocated.

Format

t_enc_ret enc_driver_alloc(
t_enc_ifc_hdl i fc_hdl,
t_enc_ins_hdl * p_inst_hdl)

Arguments
Argument Description Type
ifc_hdl The algorithm handle. t_enc_ifc_hdl
p_inst_hdl A pointer to the algorithm instance handle. t enc_ins_hdl *

Return values

Return value Description
ENC_SUCCESS Successful execution.
ENC_INVALID_ERR The module was not started.
ENC_INV_HANDLER_ERR Invalid algorithm handle.

ENC_DRIVER_NSTARTED_ERR The algorithm has not been started.

Copyright HCC Embedded 2017 27 www.hcc-embedded.com

Embedded Encryption Manager User Guide

enc_driver_free

Use this function to release an encryption/hash algorithm instance.

Format

t_enc_ret enc_driver_free (

t_enc_ifc_hdl ifc_hdl,
t _enc_ins_hdl inst_hdl)
Arguments
Argument Description
ifc_hdl The encryption instance handle.
inst_hdl The algorithm instance handle.

Return values

Return value
ENC_SUCCESS
ENC_INVALID_ERR
ENC_INV_HANDLER_ERR

ENC_DRIVER_NSTARTED_ERR

Description

Successful execution.

The module has not started

The algorithm instance handle is invalid.

The algorithm has not been started.

Type
t_enc_ifc_hdl

t_enc_ins_hdl

Copyright HCC Embedded 2017

28

www.hcc-embedded.com

Embedded Encryption Manager User Guide

enc_driver_encrypt

Use this function to encrypt input data.
The encryption algorithm to use is specified by the p_cypher_data structure.

Format

t_enc_ret enc_driver_encrypt(

const t_enc_ifc_hdl i fc_hdl,

const t_enc_ins_hdl inst_hdl,

const uint8_t * const p_in[],

uint16_t in_len,

const t_enc_cypher_data * const p_cypher _dat a,

ui nt 8_t p_out[],

uint1l6_t * p_out _len)

Arguments
Argument Description Type
ifc_hdl The algorithm handle. t_enc_ifc_hdl
inst_hdl The algorithm instance handle. t_enc_ins_hdl
p_in[] A pointer to the input data buffer. uint8_t *
in_len The size of the data in bytes. uintl6 t
p_cypher_data The structure containing cypher data/the algorithm to use. t enc_cypher_data *
p_out[] On return, the output data buffer. uint8_t
p_out_len The number of bytes written to the output buffer. uintl6_t*
Return values

Return value Description
ENC_SUCCESS Successful execution.
ENC_NOT_SUPPORTED_ERR Encryption is not supported by the algorithm.
Else See Error Codes.

Copyright HCC Embedded 2017 29

www.hcc-embedded.com

Embedded Encryption Manager User Guide

enc_driver_decrypt

Use this function to decrypt input data.

The encryption algorithm to use is specified by the p_cypher_data structure.

Format

t_enc_ret enc_driver_decrypt(

const t_enc_ifc_hdl i fc_hdl,
const t_enc_ins_hdl inst_hdl,
const uint8_t * const p_in[],
uint16_t in_len,
const t_enc_cypher_data * const p_cypher _dat a,
ui nt 8_t p_out[],
uintl6_t * p_out _len)
Arguments
Argument Description
ifc_hdl The algorithm handle.
inst_hdl The algorithm instance handle.
p_in[] A pointer to the input data
in_len The size of the input data in bytes.
p_cypher_data A structure containing cypher data or the algorithm to
use.
p_out[] On return, the output data buffer.
p_out_len A pointer to the number of bytes written to the output
buffer.

Return values

Return value
ENC_SUCCESS
ENC_NOT_SUPPORTED_ERR

Else

Description

Successful execution.

Type
t_enc_ifc_hdl
t_enc_ins_hdl
uint8 t*
uintl6 t

t_enc_cypher_data *

uint8_t

uintl6 t*

Decryption is not supported by the algorithm.

See Error Codes.

Copyright HCC Embedded 2017

30

www.hcc-embedded.com

Embedded Encryption Manager User Guide

enc_driver_hash

Use this function to calculate the hash value of the input data.

Format

t_enc_ret enc_driver_hash (

const t_enc_ifc_hdl i fc_hdl,

const t_enc_ins_hdl inst_hdl,

const uint8_t p_datal],

uint16_t data_l en,

uint8_t p_out _buf[],

uintle_ t * p_out | en)

Arguments

Argument Description Type
ifc_hdl The handle of the hash algorithm to use. t _enc_ifc_hdl
inst_hdl The algorithm instance handle. t_enc_ins_hdl
p_data][] The input data buffer. uint8_t
data_len The length of the data in bytes. uintl6_t
p_out_buf[] On return, a pointer to the output buffer. uint8_t
p_out_len The number of bytes written to the output buffer. uintl6_t*

Return values

Return value Description

ENC_SUCCESS Successful execution.
ENC_NOT_SUPPORTED_ERR Hash calculation is not supported by this algorithm.
Else See Error Codes.

Copyright HCC Embedded 2017 31 www.hcc-embedded.com

Embedded Encryption Manager User Guide

enc_remove_envelop

Use this function to obtain a pointer to the data field within the DER envelope by removing the envelope.

Format

t_enc_ret enc_renove_envel op (

const uint8_t p_env[],
uint16_t data_l en,
uintle_ t * p_env_| en,
const uint8_t * pp_field[],
uint1l6_t * p_len)
Arguments
Argument Description
p_env(] A pointer to the DER envelope.
data len The length of the DER encoded block.
p_env_len A pointer to the length of the removed envelope (in
bytes).
pp_field[] A pointer to the data.
p_len A pointer to the length of the data (in bytes).

Return values

Return value
ENC_SUCCESS
ENC_DRIVER_ERR

Else

Description
Successful execution.
Operation failed.

See Error Codes.

Type
uint8_t
uintl6 t

uintl6 t*

uint8_t*

uintl6 t*

Copyright HCC Embedded 2017 32

www.hcc-embedded.com

Embedded Encryption Manager User Guide

enc_get _random_bytes

Use this function to fill the buffer with random values.

Format

voi d enc_get _random bytes (
uint8_t p_buf[],
uint16_t buf _si ze)

Arguments
Argument Description Type
p_buff] A pointer to the output buffer. uint8_t
buf_size The size of the output buffer. uintl6 t

Return values

None.

Copyright HCC Embedded 2017 33 www.hcc-embedded.com

Embedded Encryption Manager User Guide

5.3 Error Codes

The table below lists the error codes that may be generated by the API calls.

Error code Value Meaning

ENC_SUCCESS 0 No error; function was successful.

ENC_INVALID_ERR 1 Operation not allowed in this state.
ENC_INV_HANDLER_ERR 2 Invalid algorithm handler.

ENC_PARAM_ERR 3 Invalid function input parameter.

ENC_FORMAT_ERR 4 Input data format error.

ENC_NO_SLOT_ERR 5 No free slot to register algorithm.
ENC_NOT_SUPPORTED_ERR 6 Operation not supported by algorithm.
ENC_ALREADY_REG_ERR 7 An algorithmwith this ID is already registered.
ENC_DRIVER_USED_ERR 8 Operation not allowed because algorithm is currently in use.
ENC_DRIVER_INIT_ERR 9 Algorithm initialization function failed.
ENC_DRIVER_NINIT_ERR 10 Operation not allowed because algorithm was not initialized.
ENC_DRIVER_NSTARTED_ERR 11 Operation not allowed because algorithm was not started.
ENC_DRIVER_ERR 12 Error in algorithm function.
ENC_DRIVER_INSTANCE_ERR 13 The algorithm instance value is invalid.

ENC_DRIVERS _REG_ERR 14 Operation failed because algorithms are still registered.

The table below lists the invalid handle error codes.

Error code Value Meaning
ENC_DRVHDL_INVALID_HANDLE OXFFFF No error; function was successful.
ENC_DRVINST_INVALID_HANDLE OXFFFFFFFF Invalid input parameter.

Copyright HCC Embedded 2017 34 www.hcc-embedded.com

Embedded Encryption Manager User Guide

5.4 Types and Definitions

t_enc_drv_init_fn

The t_enc_drv_init_fn definition specifies the format of the function used by the EEM to register an
algorithm.

This function is used to obtain the structure containing pointers to encryption functions. The init() function
should be the only function visible outside of the source file. All other functions should be declared as static.

Note:

® The algorithm is responsible for implementing mutex protection if this is needed.
® |f a function is not implemented, clear its pointer in t_enc_driver_fn.

Format

typedef t_enc_ret (* t_enc_drv_init_fn)(t_enc_driver_fn * * const pp_encdriver)

Arguments
Argument Description Type
pp_encdriver The structure containing the function pointers of the t enc_driver_fn**

algorithm.

Copyright HCC Embedded 2017 35 www.hcc-embedded.com

Embedded Encryption Manager User Guide

t_enc_driver_fn
The t_enc_driver_fn structure contains function pointers that are used by the module to run an algorithm.

There is no need to specify all the functions, but you must specify at least one of the following function
pointers: p_edfn_calc(), p_edfn_encrypt(), or p_edfn_decrypt().

typedef struct {

t_enc_ret (* p_edfn_init)(void);

t_enc_ret (* p_edfn_start)(void);

t_enc_ret (* p_edfn_stop)(void);

t_enc_ret (* p_edfn_delete)(void);

t_enc_ret (* p_edfn_alloc)(t_enc_ins_hdl * p_ins_hdl);

t_enc_ret (* p_edfn_free) (const t_enc_ins_hdl ins_hdl, uint8_t p_out_buf[], uintl6_t *
p_out _len);

t_enc_ret (* p_edfn_calc)(
const t_enc_ins_hdl inst_hdl,
const uint8_t p_data[],
uintl6_t data_len,
uint8_t p_out_buf[],
uintl6_t * p_out_len);

t_enc_ret (* p_edfn_encrypt) (
const t_enc_ins_hdl inst_hdl,
const uint8_t p_in[], uintl6_t in_len,
const t_enc_cypher_data * const p_cypher_data,
uint8_t p_out[],
uintlé_t * p_out_len);

t_enc_ret (* p_edfn_decrypt) (
const t_enc_ins_hdl inst_hdl,
const uint8_t p_in[],
uintl6_t in_len,
const t_enc_cypher_data * const p_cypher_data,
uint8_t p_out[],
uintlé_t * p_out_len);

} t_enc_driver_fn;

Copyright HCC Embedded 2017 36 www.hcc-embedded.com

Embedded Encryption Manager User Guide

t enc_cypher_data

The t_enc_cypher_data structure contains cypher data needed by encryption/hash algorithms. It takes this

form:

Element
p_ecd_init_vect
ecd_init_vect_size
p_ecd_key

ecd _key_size
p_ecd_auth

ecd_auth_size

t_enc_reg

Type
uint8_t*
uintl6 _t
void *
uintl6 t
uint8_t*

uintl6_t

Description

A pointer to the initial data.

The length of the initial data vector.

A pointer to the buffer storing the private key.
The length of the private key in bytes.

A pointer to the buffer storing authorization data.

The size of the authorization data.

The t_enc_reg structure describes an algorithm table entry. When an algorithm is registered, it is assigned
an entry in the table. The registration function checks that the algorithm is not already registered, so no

algorithm is registered twice.

The structure takes this form:

Element
p_erg_init_fun

p_erg_enc_functions

erg_init

erg_start_ref_count

Type
t_enc_drv_init_fn

t_enc_driver_fn *

uint8_t

uint32_t

Description
A pointer to the algorithm init function.

A pointer to the structure of encryption/hash
functions.

A flag showing whether the algorithm is initialized.

This is set TRUE when a user calls enc_driver_init
() for the current algorithm. It is set FALSE by a
call of enc_driver_delete().

The number of users that have started an
algorithm but not stopped it.

The algorithm is stopped when erg_start_ref count
is equal to 1 and a user calls enc_driver_stop().

Copyright HCC Embedded 2017

37

www.hcc-embedded.com

Embedded Encryption Manager User Guide

t big_num

The t_big_num structure defines numbers used in large number arithmetic. It takes this form:

Element Type Description
p_bn_value uintg8 _t* A pointer to the big number value in little-endian
order.

The buffer must be 4 byte-aligned and its size
must be a multiple of 4.

bn_len uintl6_t The length of the value in bytes.
bn_buf_len uintl6_t The byte length of the data buffer. This must be a
multiple of 4.

Note the following:

® If the number length is not set properly, a big number function can produce incorrect results.
® If number length is not a multiple of 4, the last bytes of the buffer must be cleared. For example, if
bn_lenis 3:

buffer = {0x34, 0x12, 0x12, 0x12 }; // is incorrect
buffer = {0x34, 0x12, 0x12, 0x00 }; // is correct

Copyright HCC Embedded 2017 38 www.hcc-embedded.com

Embedded Encryption Manager User Guide

6 Integration

The EEM is designed to be as open and as portable as possible. No assumptions are made about the
functionality, the behavior, or even the existence, of the underlying operating system. For the system to
work at its best, perform the porting outlined below. This is a straightforward task for an experienced
engineer.

6.1 OS Abstraction Layer

The EEM uses the OS Abstraction Layer (OAL) that allows it to run seamlessly with a wide variety of
RTOSes, or without an RTOS.

The EEM module uses the following OAL components:

OAL Resource Number Required

Tasks 0
Mutexes 1
Events 0

Copyright HCC Embedded 2017 39 www.hcc-embedded.com

Embedded Encryption Manager User Guide

6.2 PSP Porting

The Platform Support Package (PSP) is designed to hold all platform-specific functionality, either because it
relies on specific features of a target system, or because this provides the most efficient or flexible solution
for the developer. For full details of its functions and macros, see the HCC Base Platform Support Package

User Guide.

The module makes use of the following standard PSP functions:

Function Package

psp_aligncheck() psp_base

psp_check_buff_length() psp_base

psp_getcurrenttimedate() psp_base

psp_getrand() psp_base

The module makes use of the following standard PSP macro:

Macro Package

PSP_RD_BE16 psp_base

Element

psp_aligncheck

psp_aligncheck

psp_rtc

psp_string

Element

psp_endianness

Description

Checks that the address of the first
element of a buffer is aligned properly to
four bytes.

Checks that a buffer size is a multiple of
four.

Returns the current date and time.

Returns a 32 bit random number.

Description

Reads a 16 bit value stored as big-endian
from a memory location.

Copyright HCC Embedded 2017

40

www.hcc-embedded.com

	System Overview
	Introduction
	Feature Check
	Packages and Documents
	Packages
	Documents

	Change History

	Source File List
	API Header File
	Configuration File
	System Files
	Version File

	Configuration Options
	Algorithm and User Module Overview
	Driver Development Rules
	Algorithm Example
	Pseudo code of algorithm functions

	User Module Example
	Initialization Pseudocode
	User Module Pseudocode

	Application Programming Interface
	Module Management
	enc_init
	enc_start
	enc_stop
	enc_delete
	enc_register
	enc_deregister

	Algorithm Management
	enc_driver_init
	enc_driver_start
	enc_driver_stop
	enc_driver_delete
	enc_driver_alloc
	enc_driver_free
	enc_driver_encrypt
	enc_driver_decrypt
	enc_driver_hash
	enc_remove_envelop
	enc_get_random_bytes

	Error Codes
	Types and Definitions
	t_enc_drv_init_fn
	t_enc_driver_fn
	t_enc_cypher_data
	t_enc_reg
	t_big_num

	Integration
	OS Abstraction Layer
	PSP Porting

