Table of Contents

- System Overview .. 3
- Introduction .. 3
- Feature Check .. 4
- Packages and Documents .. 4
 - Packages .. 4
 - Documents .. 4
- Change History ... 5
- Source File List .. 6
 - Configuration Files .. 6
 - Source Code ... 6
 - Version File ... 6
 - PSP Files .. 7
- Configuration Options ... 8
 - config_usbd_synopsys_otg.h .. 8
 - config_usbd_synopsys_otg.c .. 9
- Integration ... 10
 - OS Abstraction Layer (OAL) .. 10
 - PSP Porting .. 11
 - psp_usbd_hw_init .. 12
 - psp_usbd_hw_start ... 13
 - psp_usbd_hw_stop ... 14
 - psp_usbd_hw_delete ... 15
1 System Overview

1.1 Introduction

This guide is for those who want to configure and use the HCC Embedded Low Level Driver for Synopsys® OTG module with HCC’s USB device stack. This module provides a USB device driver for Synopsys® On The Go (OTG) controllers (these include the STM32 connectivity line, STM32F20x, STM32F40x, Infineon XMC microcontrollers, and some Telit processors).

The driver can handle all USB transfer types and, in conjunction with the USB device stack, can be used with any USB device class driver.

This package provides a low level driver for a USB stack, as shown below.

The low level driver is always started automatically by the USB device stack. The driver is linked to the stack at compile time, because each low level driver uses the same function names. This also means that only one driver can run in a system.
1.2 Feature Check

The main features of the low level driver are the following:

- It conforms to the HCC Advanced Embedded Framework.
- It can be used with or without an RTOS.
- It conforms to HCC's USB Device Low Level Driver Specification.
- It is integrated with the HCC USB device stack and all its class drivers.
- It supports controllers with the Synopsys core (including the STM32 connectivity line, STM32F20x, STM32F40x, Infineon XMC microcontrollers, and some Telit processors).
- It supports all USB transfer types: Control, Bulk, Interrupt, and Isochronous.

1.3 Packages and Documents

Packages

The table below lists the packages that you need in order to use this module:

<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hcc_base_doc</td>
<td>This contains the two guides that will help you get started.</td>
</tr>
<tr>
<td>usbd_base</td>
<td>The USB device base package. Its source code includes the USB Driver device core.</td>
</tr>
<tr>
<td>usbd_drv_synopsys_otg</td>
<td>The Synopsys® OTG low level driver package described by this document.</td>
</tr>
</tbody>
</table>

Documents

Readers should note the points in the HCC Documentation Guidelines on the HCC documentation website.

HCC Firmware Quick Start Guide

This document describes how to install packages provided by HCC in the target development environment. Also follow the Quick Start Guide when HCC provides package updates.

HCC Source Tree Guide

This document describes the HCC source tree. It gives an overview of the system to make clear the logic behind its organization.

HCC Embedded USB Device Base System User’s Guide

This document defines the USB device base system upon which the complete USB stack is built.

USB Device Low Level Driver for Synopsys® OTG User’s Guide

This is this document.
1.4 Change History

This section includes recent changes to this product. For a list of all the changes, refer to the file src/history
/usb-device/usbd_drv_synopsys_otg.txt in the distribution package.

<table>
<thead>
<tr>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
</table>
| 3.01 | The EP0 endpoint can now receive more than 64 bytes of data.
 | Implemented remote wakeup.
 | Fixed the following problems:
 | • No longer sends event to common layer after each packet is received.
 | • An early suspend interrupt is not handled as suspended state.
 | • OUT endpoints were not stalled correctly. |
| 2.16 | Reset the forcing device mode in usbd_hw_stop(). This allows correct operation of the driver when used with OTG. |
2 Source File List

This section describes all the source code files included in the system. These files follow the HCC
Embedded standard source tree system, described in the *HCC Source Tree Guide*. All references to file
pathnames refer to locations within this standard source tree, not within the package you initially receive.

Note: Do not modify any of these files except the configuration files and PSP files.

2.1 Configuration Files

These files contain all the configurable parameters. Configure these as required. For details of these
options, see **Configuration Options**.

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>src/config/config_usbd_synopsys_otg.h</td>
<td>Configuration options.</td>
</tr>
<tr>
<td>src/config/config_usbd_synopsys_otg.c</td>
<td>FIFO configuration.</td>
</tr>
</tbody>
</table>

2.2 Source Code

These are the source code files. **These files should only be modified by HCC.**

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>src/usb-device/usb-drivers/usbd_dev.h</td>
<td>Main header file.</td>
</tr>
<tr>
<td>src/usb-device/usb-drivers/usbd_synopsys_otg.c</td>
<td>Source code.</td>
</tr>
<tr>
<td>src/usb-device/usb-drivers/usbd_synopsys_otg_regs.h</td>
<td>Register address definitions.</td>
</tr>
</tbody>
</table>

2.3 Version File

The file **src/version/ver_usbd_synopsys_otg.h** contains the version number of this module. This version
number is checked by all modules that use this module to ensure system consistency over upgrades.
2.4 PSP Files

These files are in the directory `src/psp/target`. They provide functions and elements the core code may need to use, depending on the hardware.

Note: These are PSP implementations for the specific microcontroller and development board; you may need to modify these to work with a different microcontroller and/or board. See PSP Porting for details.

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>include/hcc_stm32f20x_regs.h</td>
<td>Register address definitions for the STM32F20x.</td>
</tr>
<tr>
<td>usbd_synopsys_otg/psp_usbd_synopsys_otg.c</td>
<td>Functions source code.</td>
</tr>
<tr>
<td>usbd_synopsys_otg/psp_usbd_synopsys_otg.h</td>
<td>Init/start/stop/delete function definitions.</td>
</tr>
</tbody>
</table>
3 Configuration Options

3.1 config_usbd_synopsys_otg.h

Set the system configuration options in the file src/config/config_usbd_synopsys_otg.h. This section lists the available configuration options and their default values.

OTG_USE_HS_PORT

Set this to 1 to use the high speed port. The default is 1.

OTG_STM32

Set this to a non-zero value only for STM32 implementations. The default is 1.

OTG_NUM_BD_EP

The number of bi-directional endpoints. The total number of endpoints = 2*OTG_NUM_BD_EP + 1 (Endpoint0). The default is 5.

If using STM32, set this to 3 for the full speed port and 5 for the high speed port.

OTG_FIFO_SIZE

The FIFO size in 32 bit word units. The default is 1024.

OTG_HS_IN_FS_MODE

This only applies if OTG_USE_HS_PORT is set. Set it to 1 to use the high speed port in full speed mode (no external ULPI used). The default is zero.

OTG_USE_VBUS_IN

Set this to 1 if VBUS detection can be performed (VBUS is connected properly). The default is zero.

OTG_IT_PRIO

The OTG priority. The default is zero.
3.2 config_usbd_synopsys_otg.c

The file `src/config/config_usbd_synopsys_otg.c` controls FIFO configuration. This is set up as shown below:

```c
const uint32_t  otg_fifo_config[OTG_NUM_BD_EP + 2] =
{
    200 /* Rx FIFO size */
    , 16 /* NP Tx FIFO size */
    , 200 /* IN EP1 FIFO size */
    , 200 /* IN EP2 FIFO size */
    , 16 /* IN EP3 FIFO size */
    , 16 /* IN EP4 FIFO size */
    , 16 /* IN EP5 FIFO size */
    , 40/* */ /* IN EP6 FIFO size */
    , 40/* */ /* IN EP7 FIFO size */
    , 40/* */ /* IN EP8 FIFO size */
    , 60/* */ /* IN EP9 FIFO size */
    , 60/* */ /* IN EP10 FIFO size */
    , 60/* */ /* IN EP11 FIFO size */
    , 60/* */ /* IN EP12 FIFO size */
    , 60/* */ /* IN EP13 FIFO size */
    , 60/* */ /* IN EP14 FIFO size */
    , 60/* */ /* IN EP15 FIFO size */
};
```
4 Integration

This section specifies the elements of this package that need porting, depending on the target environment.

4.1 OS Abstraction Layer (OAL)

All HCC modules use the OS Abstraction Layer (OAL) that allows the module to run seamlessly with a wide variety of RTOSes, or without an RTOS.

This module requires the following OAL elements:

<table>
<thead>
<tr>
<th>OAL Resource</th>
<th>Number Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tasks</td>
<td>0</td>
</tr>
<tr>
<td>Mutexes</td>
<td>0</td>
</tr>
<tr>
<td>Events</td>
<td>1</td>
</tr>
<tr>
<td>ISRs</td>
<td>1</td>
</tr>
</tbody>
</table>
4.2 PSP Porting

The Platform Support Package (PSP) is designed to hold all platform-specific functionality, either because it relies on specific features of a target system, or because this provides the most efficient or flexible solution for the developer.

The module makes use of the following standard PSP macros:

<table>
<thead>
<tr>
<th>Macro</th>
<th>Package</th>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSP_RD_LE32</td>
<td>psp_base</td>
<td>psp_endianness</td>
<td>Reads a 32 bit value stored as little-endian from a memory location.</td>
</tr>
<tr>
<td>PSP_WR_LE32</td>
<td>psp_base</td>
<td>psp_endianness</td>
<td>Writes a 32 bit value to be stored as little-endian to a memory location.</td>
</tr>
</tbody>
</table>

The module makes use of the following PSP functions. These functions are provided by the PSP to perform various tasks. Their design makes it easy for you to port them to work with your hardware solution. The package includes samples in the PSP file `usbd_synopsys_otg/psp_usbd_synopsys_otg.c`:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>psp_usbd_hw_init()</td>
<td>Initializes the device.</td>
</tr>
<tr>
<td>psp_usbd_hw_start()</td>
<td>Starts the device.</td>
</tr>
<tr>
<td>psp_usbd_hw_stop()</td>
<td>Stops the device.</td>
</tr>
<tr>
<td>psp_usbd_hw_delete()</td>
<td>Deletes the device, releasing associated resources.</td>
</tr>
</tbody>
</table>

These functions are described in the following sections.
psp_usbd_hw_init

This function is provided by the PSP to initialize the device.

Note: Call this function first.

Format

```c
int psp_usbd_hw_init ( void )
```

Arguments

None.

Return Values

<table>
<thead>
<tr>
<th>Return value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBD_SUCCESS</td>
<td>Successful execution.</td>
</tr>
<tr>
<td>USBD_ERROR</td>
<td>Operation failed.</td>
</tr>
</tbody>
</table>
psp_usbd_hw_start

This function is provided by the PSP to start the device.

Note: Call `psp_usbd_hw_init()` before this.

Format

```c
int psp_usbd_hw_start ( void )
```

Arguments

None.

Return Values

<table>
<thead>
<tr>
<th>Return value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBD_SUCCESS</td>
<td>Successful execution.</td>
</tr>
<tr>
<td>USBD_ERROR</td>
<td>Operation failed.</td>
</tr>
</tbody>
</table>
psp_usbd_hw_stop

This function is provided by the PSP to stop the device.

Format

```c
int psp_usbd_hw_stop ( void )
```

Arguments

None.

Return Values

<table>
<thead>
<tr>
<th>Return value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBD_SUCCESS</td>
<td>Successful execution.</td>
</tr>
<tr>
<td>USBD_ERROR</td>
<td>Operation failed.</td>
</tr>
</tbody>
</table>
psp_usbd_hw_delete

This function is provided by the PSP to delete the device, releasing the associated resources.

Format

```c
int psp_usbd_hw_delete( void )
```

Arguments

None.

Return Values

<table>
<thead>
<tr>
<th>Return value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBD_SUCCESS</td>
<td>Successful execution.</td>
</tr>
<tr>
<td>USBD_ERROR</td>
<td>Operation failed.</td>
</tr>
</tbody>
</table>