Table of Contents

1 System Overview ... 3
 1.1 Introduction ... 4
 1.2 Feature Check ... 5
 1.3 Packages and Documents ... 6
 Packages ... 6
 Documents ... 6
 1.4 Change History ... 7

2 Source File List .. 8
 2.1 API Header File ... 8
 2.2 Configuration File ... 8
 2.3 Source Code ... 8
 2.4 Version File ... 8
 2.5 Platform Support Package (PSP) Files ... 9

3 Configuration Options ... 10

4 Starting the Host Controller ... 11
 4.1 usbh_atmel_hc ... 11
 4.2 Host Controller Task .. 11
 4.3 Code Example .. 12

5 Integration .. 13
 5.1 OS Abstraction Layer ... 13
 5.2 PSP Porting ... 14
 psp_usbh_atmel_init .. 15
 psp_usbh_atmel_start .. 16
 psp_usbh_atmel_stop .. 17
 psp_usbh_atmel_delete .. 18
1 System Overview

This chapter contains the fundamental information for this module.

The component sections are as follows:

- **Introduction** – describes the main elements of the module.
- **Feature Check** – summarizes the main features of the module as bullet points.
- **Packages and Documents** – the Packages section lists the packages that you need in order to use this module. The Documents section lists the relevant user guides.
- **Change History** – lists the earlier versions of this manual, giving the software version that each manual describes.
1.1 Introduction

This guide is for those who want to implement HCC Embedded’s Atmel® USBC Host Controller with the HCC USB host stack. (Atmel is now a part of Microchip Technology Inc. but for historical reasons we use "Atmel" to refer to IP used in microcontrollers that were originally developed by Atmel.)

The module provides a high speed USB 2.0 host controller that provides both full and low speed USB functions. The Atmel® Universal Serial Bus (USBC) can support several USB classes simultaneously. HCC’s controller can handle all USB transfer types and, in conjunction with the USB host stack, can be used with any USB class driver. Supported Atmel® micro-controllers include those in the SAM4 series.

The position of the host controller within the USB stack is shown below:
1.2 Feature Check

The main features of the host controller are the following:

- Conforms to the HCC Advanced Embedded Framework.
- Designed for integration with both RTOS and non-RTOS based systems.
- Integrated with the HCC USB Host stack and all its class drivers.
- Supports multiple simultaneous Atmel® USBC host controllers, each with multiple devices attached.
- Supports all USB transfer types: Control, Bulk, Interrupt, and Isochronous.
1.3 Packages and Documents

Packages

The table below lists the packages that you need in order to use this module:

<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hcc_base_doc</td>
<td>This contains the two guides that will help you get started.</td>
</tr>
<tr>
<td>usbh_base</td>
<td>The USB host base package. This is the framework used by USB class drivers to communicate over USB using a specific USB host controller package.</td>
</tr>
<tr>
<td>usbh_drv_atmel_usbc</td>
<td>The USB Atmel USBC host controller package described by this document.</td>
</tr>
<tr>
<td>psp_template_base</td>
<td>The base Platform Support Package (PSP).</td>
</tr>
</tbody>
</table>

Documents

For an overview of HCC's embedded USB stacks, see Product Information on the main HCC website.

Readers should note the points in the HCC Documentation Guidelines on the HCC documentation website.

HCC Firmware Quick Start Guide

This document describes how to install packages provided by HCC in the target development environment. Also follow the Quick Start Guide when HCC provides package updates.

HCC Source Tree Guide

This document describes the HCC source tree. It gives an overview of the system to make clear the logic behind its organization.

HCC USB Host Base System User Guide

This document defines the USB host base system upon which the complete USB stack is built.

HCC USB Atmel USBC Host Controller User Guide

This is this document.
1.4 Change History

To download this manual as a PDF, see USB Host PDFs.

For the history of changes made to the package code itself, see History: usbh_drv_atmel_usbc.

The current version of this manual is 1.00 BETA.

<table>
<thead>
<tr>
<th>Manual version</th>
<th>Date</th>
<th>Software version</th>
<th>Reason for change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>2019-02-12</td>
<td>1.01</td>
<td>First online version.</td>
</tr>
</tbody>
</table>
2 Source File List

This section describes all the source code files included in the system. These files follow the HCC Embedded standard source tree system, described in the HCC Source Tree Guide. All references to file pathnames refer to locations within this standard source tree, not within the package you initially receive.

Note: Do not modify any of these files except the configuration file and PSP files.

2.1 API Header File

The file `src/api/api_usbh_atmel_usbc.h` is the only file that should be included by an application using this module. It declares the Application Programming Interface (API) functions. For details, see Starting the Host Controller.

2.2 Configuration File

The file `src/config/config_usbh_atmel_usbc.h` contains all the configurable parameters. Configure these as required. For details of these options, see Configuration Options.

2.3 Source Code

The source code files are in the directory `src/usb-host/usb-driver/atmel_usbc`. These files should only be modified by HCC.

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>usbh_atmel_usbc.c</td>
<td>Source file for Atmel USBC code.</td>
</tr>
<tr>
<td>usbh_atmel_usbc.h</td>
<td>Header file for Atmel USBC public functions.</td>
</tr>
<tr>
<td>usbh_atmel_usbc_hc.c</td>
<td>Source file for the Atmel USBC HC descriptor.</td>
</tr>
<tr>
<td>usbh_atmel_usbc_hc.h</td>
<td>HC descriptor header file.</td>
</tr>
<tr>
<td>usbh_atmel_usbc_hub.c</td>
<td>Source file for Atmel USBC hub.</td>
</tr>
<tr>
<td>usbh_atmel_usbc_hub.h</td>
<td>Header file for Atmel USBC hub public functions.</td>
</tr>
<tr>
<td>usbh_atmel_usbcRegs.h</td>
<td>Register values.</td>
</tr>
</tbody>
</table>

2.4 Version File

The file `src/version/ver_usbh_atmel_usbc.h` contains the version number of this module. This version number is checked by all modules that use this module to ensure system consistency over upgrades.
2.5 Platform Support Package (PSP) Files

These files are in the directory `src/psp/target/usbh_atmel_usbc`. These provide functions and elements the core code may need to use, depending on the hardware.

Note:
- These are PSP implementations for the specific micro-controller and board; you may need to modify these to work with a different micro-controller and/or development board. See PSP Porting for details.
- In the package these files are offset to avoid overwriting an existing implementation. Copy them to the root `hcc` directory for use.

The files are as follows:

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>psp_usbh_atmel_usbc.c</code></td>
<td>Functions source code.</td>
</tr>
<tr>
<td><code>psp_usbh_atmel_usbc.h</code></td>
<td>Header file for functions.</td>
</tr>
</tbody>
</table>
3 Configuration Options

Set the system configuration options in the file src/config/config_usbh_atmel_usbc.h. This section lists the available options and their default values.

USBH_USBC_MAX_EP

The maximum number of software endpoints: Bulk, Isochronous, and Interrupt. The default is 9.

USBH_USBC_MAX_TRANSFERS

The maximum number of simultaneous transfers. The default is 6.

USBH_USBC_HOST_ISR

The host ISR. The default is 18, meaning USBC_IRQn.

USBH_USBC_HOST_INT_PRIO

The interrupt priority. The default is 1.

USBH_USBC_TRANSFER_TASK_SIZE

The stack size of the transfer task. The default is 1024.

USBH_USBC_BULK_SOF_SCHEDULE

Keep the default of 1 to use Bulk pipe fair bus access. Set it to 0 to disable this.

USBH_USBC_BULK_PIPE_WORKAROUND

This is the workaround for blocking Bulk pipes. Use this for evaluating performance if not using USBH_USBC_BULK_SOF_SCHEDULE (above). Possible values are:

- 0 - do not use the workaround (the default).
- 1 - treat Bulk IN pipes as Interrupt pipes.
- 2 - treat Bulk OUT pipes as Control pipes.
4 Starting the Host Controller

This section shows how to start the host controller and describes the task created. It includes a code example.

4.1 usbh_atmel_hc

This external interface function provides the host controller descriptor required by the `usbh_hc_init()` function.

Format

```c
extern void * const usbh_atmel_hc
```

4.2 Host Controller Task

The host controller task handles all completed transfers. The callback requested for the transfer is executed from this task.

The task has the following attributes:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry point</td>
<td><code>atmel_transfer_task</code></td>
</tr>
<tr>
<td>Priority</td>
<td><code>USBH_TRANSFER_TASK_PRIORITY</code></td>
</tr>
<tr>
<td>Stack size</td>
<td><code>USBH_USBC_TRANSFER_TASK_SIZE</code>. The default is 1024.</td>
</tr>
</tbody>
</table>
4.3 Code Example

This example shows how to initialize the host controller. Note the following:

- There is only one external interface function, `usbh_atmel_hc()`. To link this host controller to the system, you call the `usbh_hc_init()` function with this function as a parameter.
- The last parameter in the `usbh_hc_init()` call is the number of the host controller.

```c
void start_usb_host_stack ( void )
{
    int rc;
    rc = hcc_mem_init();

    if ( rc == 0 )
    {
        rc = usbh_init(); /* Initialize USB host stack */
    }

    if ( rc == 0 )
    {
        /* Attach Atmel USBC host controller */
        rc = usbh_hc_init( 0, usbh_atmel_hc, 0 );
    }

    if ( rc == 0 )
    {
        rc = usbh_start(); /* Start USB host stack */
    }

    if ( rc == 0 )
    {
        rc = usbh_hc_start( 0 ); /* Start Atmel USBC Host controller */
    }
    ......
}
```
5 Integration

This section specifies the elements of this package that need porting, depending on the target environment.

5.1 OS Abstraction Layer

All HCC modules use the OS Abstraction Layer (OAL) that allows the module to run seamlessly with a wide variety of RTOSes, or without an RTOS.

This module requires the following OAL elements:

<table>
<thead>
<tr>
<th>OAL Resource</th>
<th>Number Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tasks</td>
<td>1</td>
</tr>
<tr>
<td>Mutexes</td>
<td>1</td>
</tr>
<tr>
<td>Events</td>
<td>1</td>
</tr>
<tr>
<td>ISRs</td>
<td>1</td>
</tr>
</tbody>
</table>
5.2 PSP Porting

The Platform Support Package (PSP) is designed to hold all platform-specific functionality, either because it relies on specific features of a target system, or because this provides the most efficient or flexible solution for the developer.

The module makes use of the following standard PSP function:

<table>
<thead>
<tr>
<th>Function</th>
<th>Package</th>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>psp_memset()</td>
<td>psp_base</td>
<td>psp_string</td>
<td>Sets the specified area of memory to the defined value.</td>
</tr>
</tbody>
</table>

The host controller makes use of the following functions that must be provided by the PSP. These are designed for you to port them easily to work with your hardware solution. The package includes sample code for SAM4 devices in the `psp_usbh_atmel_usbc.c` file.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>psp_usbh_atmel_init()</td>
<td>Initializes the device.</td>
</tr>
<tr>
<td>psp_usbh_atmel_start()</td>
<td>Starts the device.</td>
</tr>
<tr>
<td>psp_usbh_atmel_stop()</td>
<td>Stops the device.</td>
</tr>
<tr>
<td>psp_usbh_atmel_delete()</td>
<td>Deletes the device, releasing the associated resources.</td>
</tr>
</tbody>
</table>

These functions are described in the following sections.

Note: HCC can provide samples for different configurations; contact support@hcc-embedded.com.
psp_usbh_atmel_init

This function is provided by the PSP to initialize the device.

Format

```
int psp_usbh_atmel_init ( void )
```

Arguments

None.

Return Values

<table>
<thead>
<tr>
<th>Return value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBH_SUCCESS</td>
<td>Successful execution.</td>
</tr>
<tr>
<td>USBH_ERROR</td>
<td>Operation failed.</td>
</tr>
</tbody>
</table>
psp_usbh_atmel_start

This function is provided by the PSP to start the device.

Format

```c
int psp_usbh_atmel_start ( void )
```

Arguments

None.

Return Values

<table>
<thead>
<tr>
<th>Return value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBH_SUCCESS</td>
<td>Successful execution.</td>
</tr>
<tr>
<td>USBH_ERROR</td>
<td>Operation failed.</td>
</tr>
</tbody>
</table>
psp_usbh_atmel_stop

This function is provided by the PSP to stop the device.

Format

```c
int psp_usbh_atmel_stop ( void )
```

Arguments

None.

Return Values

<table>
<thead>
<tr>
<th>Return value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBH_SUCCESS</td>
<td>Successful execution.</td>
</tr>
<tr>
<td>USBH_ERROR</td>
<td>Operation failed.</td>
</tr>
</tbody>
</table>
psp_usbh_atmel_delete

This function is provided by the PSP to delete the device, releasing associated resources.

Format

```c
int psp_usbh_atmel_delete ( void )
```

Arguments

None.

Return Values

<table>
<thead>
<tr>
<th>Return value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBH_SUCCESS</td>
<td>Successful execution.</td>
</tr>
<tr>
<td>USBH_ERROR</td>
<td>Operation failed.</td>
</tr>
</tbody>
</table>