
Copyright HCC Embedded 2020 1/187 www.hcc-embedded.com

FAT and SafeFAT
File System User

Guide

Version 5.30

For use with FAT and SafeFAT versions 9.1 and above

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 2/187 www.hcc-embedded.com

Table of Contents

1. System Overview 7 ..

1.1. Introduction 8 ..
1.2. Feature Check 10 ...
1.3. Packages and Documents 11 ..
1.4. Change History 12 ...

2. File Encryption 14 ...

3. About SafeFAT 15 ...

3.1. File Synchronization 15 ...
3.2. Operation and FAT Compatibility 15 ..
3.3. Lower Layer Requirements 15 ..
3.4. Improving Performance 16 ...

4. Source File List 17 ..

5. Configuration Options 19 ..

5.1. config_fat.h 19 ...
General Options 19 ..
File Names 21 ..
Other File Options 22 ...
Volume Definitions 24 ..
Sector Size 25 ..
Caching 26 ...
Encryption 27 ...

5.2. config_fat.c 27 ..

6. Other File System Information 28 ...

6.1. System Requirements 28 ..
6.2. Stack Requirements 28 ...
6.3. Real-Time Requirements 28 ..
6.4. Drives, Partitions and Volumes 29 ...
6.5. Drive Format 29 ...
6.6. Cache Setup and Options 29 ..
6.7. Use of Wildcards 31 ...

7. Application Programming Interface 32 ...

7.1. Module Management 32 ..
fs_init 33 ..

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 3/187 www.hcc-embedded.com

fs_start 34 ..
fs_stop 35 ...
fs_delete 36 ...

7.2. File System API 37 ...
General Management 38 ..

f_enterFS 39 ..
f_releaseFS 40 ...
f_getlasterror 41 ...

Volume Management 42 ..
f_initvolume 44 ...
f_initvolume_nonsafe 46 ...
f_delvolume 48 ..
f_checkvolume 49 ...
f_repair 50 ...
f_setvolname 51 ..
f_getvolname 53 ...
f_get_oem 54 ..
f_get_volume_count 55 ...
f_get_volume_list 56 ...
f_initvolumepartition 57 ..
f_initvolumepartition_nonsafe 59 ..
f_format 61 ...
f_createpartition 63 ...
f_createpartition_align 65 ...
f_getpartition 67 ..
f_createdriver 69 ...
f_releasedriver 71 ...
f_chdrive 73 ..
f_getdrive 74 ...
f_getfreespace 75 ...
f_getlabel 77 ...
f_setlabel 78 ..
f_get_cluster_size 79 ...
f_volume_clean 80 ..

Directory Management 83 ...
f_mkdir 84 ...
f_chdir 85 ..

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 4/187 www.hcc-embedded.com

f_rmdir 86 ..
f_getcwd 87 ...
f_getdcwd 88 ...

File Access 89 ..
f_open 90 ..
f_open_enc 92 ...
f_open_nonsafe 94 ..
f_close 96 ..
f_abortclose 96 ..
f_flush 99 ..
f_read 100 ...
f_write 102 ..
f_getc 104 ...
f_putc 105 ...
f_eof 106 ...
f_seteof 107 ..
f_tell 108 ...
f_seek 109 ...
f_rewind 111 ...
f_truncate 112 ...
f_ftruncate 113 ..

File Management 114 ..
f_delete 115 ..
f_deletecontent 116 ..
f_findfirst 117 ..
f_findnext 119 ...
f_move 121 ...
f_rename 122 ..
f_getattr 123 ...
f_setattr 125 ..
f_gettimedate 126 ...
f_settimedate 128 ...
f_stat 130 ..
f_fstat 131 ...
f_filelength 133 ...
f_dir_walk 134 ...
f_disk_usage 136 ...

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 5/187 www.hcc-embedded.com

7.3. File System Unicode API 138 ..
Unicode Directory Management 139 ..

f_wmkdir 140 ..
f_wchdir 141 ..
f_wrmdir 142 ...
f_wgetcwd 143 ..
f_wgetdcwd 144 ..

Unicode File Access 145 ...
f_wopen 146 ..
f_wopen_nonsafe 148 ..
f_wtruncate 150 ..

Unicode File Management 151 ...
f_wdelete 152 ..
f_wdeletecontent 153 ..
f_wfindfirst 154 ...
f_wfindnext 155 ..
f_wmove 156 ...
f_wrename 157 ...
f_wgetattr 158 ...
f_wsetattr 159 ...
f_wgettimedate 160 ..
f_wsettimedate 162 ..
f_wstat 164 ...
f_wfilelength 165 ...
f_wdir_walk 166 ...

Unicode Translation 169 ..
f_set_ascii_to_unicode 170 ..
f_set_unicode_to_ascii 171 ..

7.4. Error Codes 172 ...
7.5. Types and Definitions 174 ..

W_CHAR: Character and Wide Character Definition 174 ..
F_FILE: File Handle 174 ..
F_FIND 174 ...
F_WFIND 175 ..
F_SPACE 175 ..
F_PARTITION 176 ..
F_STAT Structure 176 ...

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 6/187 www.hcc-embedded.com

ST_FILE_CHANGED 176 ..
Change Object Flags 177 ...
Change Object Actions 177 ..
Directory Entry Attributes 178 ...
Format Type 178 ..
System Indicator 178 ...
cdate Definitions 179 ...
ctime Definitions 179 ...
t_dir_walk_cb_fn 180 ..
t_wdir_walk_cb_fn 181 ...
t_volume_clean_stage_type 182 ..
t_volume_clean_cb_fn 182 ...

8. Integration 183 ...

8.1. OS Abstraction Layer 183 ...
Configuring the OAL 184 ..
Multiple Tasks, Mutexes and Reentrancy 184 ..

8.2. PSP Porting 185 ...
Get Time and Date 186 ..
Random Number 186 ...

9. Version 187 ..

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 7/187 www.hcc-embedded.com

1. System Overview
This chapter contains the fundamental information for this module.

The component sections are as follows:

Introduction – describes the main elements of the module.
Feature Check – summarizes the main features of the module as bullet points.
Packages and Documents – the Packages section lists the packages that you need in order to use
this module. The Documents section lists the relevant user guides.
Change History – lists the earlier versions of this manual, giving the software version that each
manual describes.

All rights reserved. This document and the associated software are the sole property of HCC
Embedded. Reproduction or duplication by any means of any portion of this document without the prior
written consent of HCC Embedded is expressly forbidden.
HCC Embedded reserves the right to make changes to this document and to the related software at
any time and without notice. The information in this document has been carefully checked for its
accuracy; however, HCC Embedded makes no warranty relating to the correctness of this document.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 8/187 www.hcc-embedded.com

1.1. Introduction
This guide is for those who wish to implement a fail-safe file system. It covers HCC Embedded's FAT and
SafeFAT file system products.

SafeFAT is a comprehensive FAT file system for FAT12, FAT16, and FAT32, designed to be truly fail-safe.
SafeFAT protects against unexpected reset or power loss.

FAT and SafeFAT can access any combination of storage device types that conform to the HCC Media
Driver Interface Specification. HCC provides proven drives over many platforms for RAM, SD card, Compact
Flash card, MultiMediaCard, HDD, Flash Translation Layer (FTL) and others.

This diagram summarizes the system architecture:

User applications use the standard file Application Programming Interface (API) to issue file system
commands to the FAT file system. The FAT file system makes use of media drivers to access one or more
storage media to execute the requested storage operation.

Note: Because SafeFAT is closely related to HCC's FAT file system, this manual uses the term SafeFAT
only where it refers to functionality that is not available in the FAT system, but is specifically provided
by SafeFAT.

https://doc.hcc-embedded.com/media-driver-interface-guide
https://doc.hcc-embedded.com/media-driver-interface-guide

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 9/187 www.hcc-embedded.com

Note:

HCC offers hardware and firmware development consultancy to assist developers with the
implementation of various types of file system.
Although every attempt has been made to simplify the system's use, developers must have a good
understanding of the requirements of the systems they are designing in order to obtain the
maximum practical benefits.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 10/187 www.hcc-embedded.com

1.2. Feature Check
The main features of the system are the following:

Conforms to the HCC Advanced Embedded Framework.
Designed for integration with both RTOS and non-RTOS based systems.
Code size is ~24 KB (FAT) ~31 KB (SafeFAT).
RAM usage is >3 KB (FAT) and >6 KB (SafeFAT).
Provides fail safety (SafeFAT only).
ANSI ‘C’.
Supports long filenames.
Supports Unicode 16.
Supports multiple open files.
Supports multiple users of open files.
Supports multiple volumes.
Supports multi-sector read/write.
Supports variable sector sizes.
Supports partition handling.
Handles media errors.
Test suite is provided.
Cache options give improved performance.
Supports zero copy.
Reentrant.
Common API (CAPI) support.
Secure delete option (but this needs special driver support).
AES 128 file encryption option.
FAT-compatible.
Standard drivers are available for SD, SDHC, SDXC, MMC, SafeFTL, USB-MST, HDD and RAM.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 11/187 www.hcc-embedded.com

1.3. Packages and Documents

Packages
This table lists the packages that need to be used with this module, and also optional modules that may
interact with this module, depending on your system's design:

Package Description

hcc_base_doc This contains the two guides that will help you get started.

fs_fat The FAT file system package. This is the base system on which SafeFAT is built.

fs_fat_safe The SafeFAT package that contains the extensions to FAT.

fs_fat_test The FAT File System Test Suite.

psp_template_base The Platform Support Package (PSP) base package.

oal_base The OS Abstraction Layer (OAL) base package.

media_drv_base The Media Driver base package that provides the base for all media drivers that
attach to the file system.

fs_capi The File System Common API (required if used with the SafeFLASH file system).

Additional packages

Other packages may also be provided, for example media drivers and PSP extensions specific to a target.

Documents
For an overview of HCC file systems and guidance on choosing a file system, see Product Information on
the main HCC website.

Readers should note the points in the HCC Documentation Guidelines on the HCC documentation website.

HCC Firmware Quick Start Guide

This document describes how to install packages provided by HCC in the target development environment.
Also follow the Quick Start Guide when HCC provides package updates.

HCC Source Tree Guide

This document describes the HCC source tree. It gives an overview of the system to make clear the logic
behind its organization.

HCC FAT and SafeFAT File System User Guide

This is this document.

https://www.hcc-embedded.com/file-systems
https://doc.hcc-embedded.com/hcc-documentation/hcc-documentation-guidelines

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 12/187 www.hcc-embedded.com

1.4. Change History
This section describes past changes to this manual.

To download this manual or a PDF describing an earlier software version, see File System PDFs.
For the history of changes made to the package code itself, see History: fs_fat.

The current version of this manual is 5.30. The full list of versions is as follows:

Manual
version Date Software

version Reason for change

5.30 2020-03-05 9.1 Added volume cleaning:
• configuration options: F_VOLUME_CLEAN_SUPPORT,
F_VOLUME_CLEAN_FILL_CHAR and F_SZ_VOLUME_CLEAN_BUFn.
• f_volume_clean() function, t_volume_clean_cb_fn() callback and
t_volume_clean_stage_type typedef.
f_disk_usage() now uses two 32 bit variables instead of one 64 bit
variable.

5.20 2019-11-08 8.51 Added BAD_BLOCK_HANDLING configuration option.

5.10 2019-08-28 8.46 Added F_SAFE_AUTO_REPAIR configuration option and f_repair() function.

5.00 2019-08-22 8.45 Added information to f_setvolname(), f_setvolname(), and f_setlabel().

4.90 2019-06-27 8.45 Changed default of configuration option F_MAX_SECTOR_SIZE.
Simplified Media Drivers section in Source Files.
Improved f_createpartition() text.
Note: the following should have been added to this manual at s/w version
8.35.
Added configuration options
F_DIR_WALK_SUPPORT, F_DIR_WALK_MAX_DIR_DEPTH, and
F_DISK_USAGE_SUPPORT.
Added f_get_cluster_size(), f_disk_usage(), f_dir_walk(), f_wdir_walk()
and callbacks used by the last two.

4.80 2019-01-10 8.41 Added directory to f_stat() and fwstat() pages. Also changed the note on
those pages.

4.70 2018-07-23 8.40 Changed text on F_FILE_CHANGED_EVENT and FN_MAXPATHNAME
configuration options.

4.60 2018-07-13 8.37 Changed text on date and time formats in functions
f_gettimedate() and f_settimedate(); added two pages describing their
definitions.

4.50 2017-09-19 8.24 Changed encryption options section and f_open_enc() text.

4.40 2017-08-10 8.23 Added File Encryption section. Added note to Encryption.
Fixed f_open_enc() example and moved this call to after f_open().

4.30 2017-07-21 8.23 Packages list extended.
Unsigned long replaced by uint32_t in structures:
F_FIND, F_WFIND, F_PARTITION, F_SPACE,
F_STAT, ST_FILE_CHANGED.

https://doc.hcc-embedded.com/hcc-documentation/file-systems/file-system-pdfs#FileSystemPDFs-FATandSafeFATFileSystemHCCFATandSafeFATFileSystemUserGuide
https://doc.hcc-embedded.com/hcc-documentation/product-version-numbers-and-histories/history-fs-fat

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 13/187 www.hcc-embedded.com

Manual
version Date Software

version Reason for change

4.20 2017-06-23 8.21 New Change History format.

4.10 2016-04-21 8.15 Added function group descriptions to API.

4.00 2016-01-06 8.12 Changes to Source Files.

3.90 2015-05-11 8.07 Various small changes.

3.80 2015-04-28 8.06 Various small changes.

3.70 2015-03-24 8.06 Added Change History section.

3.60 2014-10-24 8.06 Reorganized System Overview.

3.50 2014-05-15 8.01 First online version.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 14/187 www.hcc-embedded.com

2. File Encryption
You can optionally enable the file system to encrypt and decrypt files. To do this, you must set
the FAT_ENCRYPTION option and also include HCC's Embedded Encryption Manager (EEM) in your project.
The system uses AES encryption with 128 bit keys.

Note: A file must always be used consistently - if you start using it encrypted by using f_open_enc(),
it must always be used encrypted. If you start using it unencrypted by using f_open(), then you must
never encrypt it.

To access a file with encryption, use the f_open_enc() function. When you call this, you pass to the function
your secret 128 bit (16 byte) key for this data and also a 16 byte initialization vector that should be unique
for each file. Files opened with encryption enabled can be accessed in r, a, and a+ modes.

Disk Level Encryption

HCC can also support disk level encryption for your file systems. This is done at driver level. Please contact
HCC for further information.

https://doc.hcc-embedded.com/embedded-encryption-manager-user-guide

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 15/187 www.hcc-embedded.com

3. About SafeFAT
The standard FAT file system was not designed to operate in systems that could be reset unexpectedly.
This resulted in an extremely efficient file system, but one that could be damaged if a system using it did
not complete its operations. There are numerous situations in a FAT file system where, for the system to
be consistent, two or more areas of the disk must be updated atomically. This is clearly not possible.

To address these issues, HCC Embedded has developed SafeFAT. For critical operations, SafeFAT makes a
log of operations. To summarize:

It records what it is going to do.1.
It does it.2.
It cancels the original record of what it was going to do.3.

Therefore, with some careful implementation, it is always possible for the system at boot time to check
whether a critical operation was in progress. If so, the system either completes the operation that was in
progress, or rewinds the system to the previous consistent state.

An additional factor is that, in the standard FAT file system, if a file pointer is moved to the middle of a file
the existing data is directly overwritten. In the SafeFAT system this cannot be allowed to happen.
Therefore, new sectors must be allocated (and chains modified) to ensure that the original file state can be
restored if the new operation is not completed.

3.1. File Synchronization
All files are maintained in a consistent state: a file is switched to a new consistent state atomically when
you decide it should be switched. When a file is modified, these modifications are not directly added to the
file; the system lets you choose when a file is in its new state, and the new state is forced when a flush or
close is called. Until a flush or close is called, the file remains in its previously saved state.

3.2. Operation and FAT Compatibility
SafeFAT uses a standard FAT file system format. It creates a special directory ("$$SAFE$$") to use for
journaling purposes. This does not affect the normal operation of the drive. The system operates as
follows:

If the system is shut down normally, the contents of the drive are fully FAT-compatible.
If there is an unexpected reset in a system running SafeFAT and the system is then restarted, any
incomplete operation is correctly fixed using the information stored in the $$SAFE$$ directory.
If there is an unexpected reset and the volume is inserted into a system running a standard FAT file
system (for example on a PC), the FAT system will not be able to understand the special information
provided by HCC in the $$SAFE$$ directory. The volume will be in an identical state, as far as the
FAT system is concerned, to that produced if it had been running a standard FAT system that was
unexpectedly interrupted. That is, there may be errors on the disk, such as lost clusters. These
errors can be fixed by inserting the volume into a system running SafeFAT before a standard FAT file
system modifies any content on the disk.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 16/187 www.hcc-embedded.com

3.3. Lower Layer Requirements
In order for a file system that claims fail-safety to be able to ensure correct operation, it has to specify the
minimum requirements that must be satisfied by the media interface below it. For example, suppose that
a low level HDD driver has a large cache that can be written to the disk. If, when an unexpected reset
occurs there's no guarantee that all data are written, it is unlikely that any system will be able to ensure a
consistent state of that disk.

For SafeFAT the requirements are:

Any sectors written to the disk are committed to the disk before the next write is started.
Any sector written to the disk is updated atomically. That is, in all cases either the original contents
of the sector are present or the new data are present; there are no intermediate states.
If an unexpected reset condition is reached, the file system is restarted. No attempt is made to
continue to use the system after a serious condition is detected.

If these conditions are not met, the system cannot be guaranteed fail-safe. However, even if they are not
met the system is much safer than a standard unprotected FAT file system.

Guaranteeing that these conditions are fulfilled is not always easy. The vast majority of flash card vendors
do not provide detailed information about how their cards work. This makes it very difficult to define how a
system will behave when used with media whose behavior is undefined.

HCC Embedded works closely with a number of card manufacturers to provide solutions in which target
devices have been designed to meet the above criteria. HCC has a test system in place to verify whether
flash cards meet the required standards. Although HCC's tests cannot prove conclusively that a card is
reliable, as defined above, they give a very good indication of the level of reliability that can be expected.

3.4. Improving Performance
The functions f_open_nonsafe() and f_wopen_nonsafe() allow the use of faster, non-safe, file access
where appropriate. These may be used to improve performance when a file whose contents are less
sensitive is being written.

Note: If you use these and the system is reset unexpectedly, the open file may be left in an uncertain
state. Typically, the length may not be consistent with the amount of data written.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 17/187 www.hcc-embedded.com

4. Source File List
This section lists and describes all the source code files included in the system. These files follow HCC
Embedded's standard source tree system, described in the HCC Source Tree Guide. All references to file
pathnames refer to locations within this standard source tree, not within the package you initially receive.

Note: Do not modify any files except the configuration files.

API Header Files
The following files in the directory src/api must be included by any application using the system. They
include all that is required to access the system. The use of these API functions is defined in Application
Programming Interface.

File Description

api_fat.h API for the module.

api_fs_err.h Error code definitions.

Configuration Files
The following files in the directory src/config contain all the configurable parameters of the system.
Configure these as required. For details of these options, see Configuration Options.

File Description

config_fat.c If dynamic memory allocation is enabled on the system, this file defines dynamic memory
allocation for each volume.

config_fat.h Configuration options. (The fs_fat_safe package also has a copy of this file.)

Media Drivers
FAT works with any media driver that conforms to the HCC Media Driver Interface Specification and is
included under the media driver directory.

Version File
The file src/fat/version/ver_fat.h contains the version number of this module. This version number is
checked by all modules that use this module to ensure system consistency over upgrades.

https://doc.hcc-embedded.com/source-tree-guide
https://doc.hcc-embedded.com/media-driver-interface-guide

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 18/187 www.hcc-embedded.com

FAT File System
These files are in the directory src/fat/common. These files should only be modified by HCC.

File Description

fat.c FAT short filename functions.

fat.h FAT file system header.

fat_common.c Common functions.

fat_common.h Common functions header.

fat_init.h Initialization header file.

fat_lfn.c Alternative to fat.c for use with long filenames.

fat_m.c FAT file system reentrancy wrapper.

fat_m.h FAT file header reentrancy header.

fat_shjis.c Code for Shift JIS character encoding in file and directory names.

fat_shjis.h Header file for Shift JIS character encoding.

SafeFAT File System
The following files in the fs_fat_safe package's directory src/fat/safe are extensions to the FAT file
system to provide the SafeFAT functionality. These files should only be modified by HCC.

File Description

safefat.c SafeFAT-specific source code.

safefat.h SafeFAT-specific header file.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 19/187 www.hcc-embedded.com

5. Configuration Options
Use the following files to configure your system:

src/config/config_fat.h – set all the configuration options in this file.
src/config/config_fat.c – set the memory allocation settings for each volume here.

5.1. config_fat.h
This section lists the available configuration options and their default values.

General Options

FN_CAPI_USED

The default is 0. Enable this only if other HCC file systems are being used in the target system and a single
common API is required to cover all accesses to the volumes of both systems. Common API (CAPI) provides
a wrapper for these file systems and therefore covers the majority of file system configuration options. If
CAPI is used, refer to the HCC File System Common API User Guide as the starting point for system
configuration.

OEM_NAME

This field is used only when a format is performed. It can be defined to identify the drive if required. The
default is "MSDOS5.0" Change this with care since some operating systems may not accept all values.

HCC_UNICODE

This option enables support for Unicode 16 formatted characters. (Unicode 7/8 formats are supported as
standard.) The default is 0. To enable this option, you must uncomment the following line:

/* #define HCC_UNICODE */

This forces any build to include the Unicode 16 API, making the Unicode 16 API calls documented in File
System Unicode API available. This build also forces long filename support (see the F_LONGFILENAME
parameter), which is necessary for Unicode 16 support.

Use of Unicode 16:

Implies that the host system has wchar (“wide character”) support or an equivalent definition.
Creates additional resource requirements because all string and path accesses effectively use twice
the space. Therefore, use of this option is recommended only if Unicode 16 is genuinely required.

Note: To allow the file system to generate consistent short file names from the Unicode file name, you
must provide conversion tables in the code. For details, see the Unicode Translation section.

F_FILE_CHANGED_EVENT

This notifies any change in the file or directory structure of the file system. The default is 0.

https://doc.hcc-embedded.com/file-system-common-api-user-guide

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 20/187 www.hcc-embedded.com

Enabling this is useful when the system is used in conjunction with other file system interfaces such as
MTP or NFS, where the other system needs notifying of any changes to the directory or file structures in
the system. When this is enabled, a path can store the drive letter and a colon (for example, "A:") plus the
string terminator.

F_SUPPORT_TI64K

The default is 0. Enabling this option ensures that read and write operations do not cross over 64K
boundaries. The system automatically breaks the results of these operations into units which do not cross
these boundaries.

This option is provided because certain devices, in particular TI C2000 and C5000 series DSPs, do not
handle pointer increments over 64K boundaries.

USE_TASK_SEPARATED_CWD

If this is set to 1, every task has its own current working directory (cwd). This is the default setting and it is
consistent with older versions of the system.

If this is set to 0, there is one cwd per volume so if any task changes it, it is changed for all tasks accessing
that volume.

USE_MALLOC

Enable this if you want cache and other data structures to be allocated from the heap. The default is 0,
meaning these structures are statically allocated.

Set USE_MALLOC to 0 when building FAT from sources and linking to the application. All variables
are allocated statically during compile time.
Set USE_MALLOC to 1 to allow FAT to use psp_malloc() to allocate memory for variables and cache.

USE_MALLOC also allows setting of max_volumes, max_files and max_tasks at run-time, making it possible
to build FAT as a separate library. In this case the application must be compiled with the same CONFIG
files.

Note: The file system initialization function fs_init() allocates data areas differently depending
whether USE_MALLOC is enabled or disabled.

If dynamic memory allocation is enabled, options for dynamic allocation of memory per volume are set in
the src/config/config_fat.c configuration file.

SAFEFAT

The default is 0. Enable this to enable the creation of SafeFAT drives. SAFEFAT and NONSAFEFAT (see
below) can both be set to allow a mix of drives to be used.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 21/187 www.hcc-embedded.com

Note: To allow the selection of drives to be safe or non-safe, the functions f_initvolume_nonsafe()
and f_initvolumepartition_nonsafe() have been added to the system to complement their safe
counterparts f_initvolume() and f_initvolumepartition().

NONSAFEFAT

The default is 1. This must be set in order to be able to create standard (non-safe) FAT drives. For details,
see SAFEFAT above.

F_SAFE_AUTO_REPAIR

If SafeFAT is enabled and this option is set to the default of 1, after power-on the file system is
automatically returned to a consistent state.

If this is set to 0 and repair is needed f_initvolume() initializes the file system as read-only. In this case,
after power-on f_repair() must be used to return the file system to a consistent state. Otherwise, read-
only access is all that will be available.

BAD_BLOCK_HANDLING

Set this to 1 to enable bad block handling. The default is 0.

File Names

F_LONGFILENAME

Enable this to use long filenames. The default is 0. The system includes two main source files:

File Description

fat.c The file system without long filename support. If long filenames exist on the media, the
system will ignore the long name part and use only the short name.

fat_lfn.c The file system with complete long filename support.

Because more system resources are required to handle long filenames, use these only when necessary.
This avoids increasing the stack sizes of applications that call the file system, and also increasing the
amount of checking that is required.

Note: The maximum long filename space required by the standard is 260 bytes. As a consequence,
each time a long filename is processed, large areas of memory must be available. You can, depending
on the application, reduce the size of F_MAXPATHNAME and F_MAXLNAME to cut resource use.

The most critical functions for long filenames are f_rename() and f_move(), which must keep two long
filenames on the stack, with additional structures for handling them. If either function is not required for
your application, it is sensible to comment it out. This can reduce the stack requirements significantly.

F_MAXSNAME

The length of the name part of a short filename. The default is 8. Do not change this.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 22/187 www.hcc-embedded.com

F_MAXSEXT

The length of the extension part of a short filename. The default is 3. Do not change this.

FN_MAXLNAME

The maximum length of a long filename. The default is 255. Do not increase this because this will make
the system incompatible with other systems. You can decrease it to reduce the resource requirements, in
particular the stack.

FN_MAXPATHNAME

The maximum length of a short/long filename with the full path (excluding the drive letter).The default is
256.

You can decrease this to reduce the resource requirements, in particular the stack. Note that this is
redefined internally to F_MAXPATHNAME, which is referred to elsewhere in this manual.

F_SHIFT_JIS_SUPPORT

Set this to 1 to enable SHIFT_JIS character encoding in file and directory names. The default is 0.

Other File Options

F_MAXFILES

The total number of files that may be open simultaneously across all volumes. The default is 7.

F_MAXSEEKPOS

The number of seek points in a file to be stored with each file descriptor. If this is set to 0, seeking always
works from the current position or the beginning of the file. The default is 8. F_MAXSEEKPOS should be set
equal to a power of 2 or to 0.

Note: The memory usage of the system is increased by: F_MAXSEEKPOS*F_MAXFILES*sizeof(long)

Seeking to a new position in a large file can be slow with a FAT file system because there are no backward
pointers on the cluster chains. To improve seek performance, this option is provided to store key points in
the file. If it is enabled then, as the file is processed, points are recorded at intervals in the file and when
the file system is required to seek, these points can be used as a shortcut to get to an offset in the target
file.

Example: If there is a 1GB file and there are 8 seek points, these points would be every 128MB.
Consequently, the maximum amount of storage space you would have to work through to find a location in
the file is 128MB of clusters instead of 1GB; this is a considerable improvement.

The seek points are inserted at regular intervals when the file is opened, on the basis of the known length
of the file. These points are not dynamically updated after this, so if you need to refresh the seek points,
you must perform a close and open on the file.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 23/187 www.hcc-embedded.com

F_UPDATELASTACCESSDATE

If you enable this option, whenever you open a file for read (“r”), a sector write is performed on the
directory entry. This updates the last accessed date (the date is checked before updating, to ensure it
needs updating).

To avoid this overhead, keep 0 (the default), in which case only other file manipulations
(“r+”,“w”,”w+”,”a” and ”a+”) change the date entry.

F_FINDOPENFILESIZE

In standard file systems, if a file is open for writing or append its length is not updated until the file is
closed. Any function that uses the length of the file, for example f_filelength(), gets the pre-open value.

Enabling this option allows the dynamic file length of the file to be used when these functions are called.
The default is 0.

F_DELETE_CONTENT

If this is set to 1, after a file is deleted or content is truncated, all data is destroyed (overwritten to 0xFF).
The default is 0.

If IOCTL is available, FAT uses those functions to perform the deletions. Otherwise the deletes are
performed manually by the file system.

When deletion is enabled, the f_deletecontent() function may be called instead of the standard
f_delete(). This call removes the file and destroys its contents.

This system has been designed to interoperate with HCC's SafeFTL flash translation layer so that the
original data is overwritten.

On an HDD this will work normally, since logical sectors are directly mapped onto the physical disk.

On a flash card this option will not help because, when new data are written, a new block of flash is
allocated and the original data may still exist on the disk, although it will not be accessible through normal
methods.

Note:

There is a significant overhead involved in erasing all data that has been written. Therefore, use of
this function is recommended only when it is important to ensure that deleted data are no longer
accessible.
This can guarantee the erasure of data only if the underlying media erases the original physical
sectors. Therefore, systems that have a physical-logical mapping of the data need special handling.
If there is an interruption, such as switching off the system during a f_deletecontent(), it cannot
be guaranteed that the deletion of data will be completed. If data deletion is important, use of
HCC’s SafeFAT file system is recommended.

F_DIR_WALK_SUPPORT

Set this to 1 to enable the f_dir_walk() function. The default is 0.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 24/187 www.hcc-embedded.com

F_DIR_WALK_MAX_DIR_DEPTH

The maximum directory depth to walk. The default is 128.

F_DISK_USAGE_SUPPORT

If F_DIR_WALK_SUPPORT is set, F_DISK_USAGE_SUPPORT is set to 1 as well to enable the
f_disk_usage() and f_volume_clean() functions. (f_disk_usage() uses the f_dir_walk() function.)

Volume Definitions

FAT_MAXVOLUME

The maximum number of volumes allowed on the system. The default is 2. Volumes are given drive letters
as specified by f_initvolume().

The system is designed so that access to a specific volume is entirely independent of any other volumes.
That is, if an operation is being performed on a volume it does not block access to other volumes.

FAT_MAXTASK

The number of tasks that are allowed to access the file system simultaneously.

If this is set to 1 (the default), it implies that no OS is used, or that all accesses are controlled through a
single task.

FN_CURRDRIVE

This determines which drive of the system is used at system startup. If -1 is set there is no default current
drive. The default is 0.

F_PATH_SEPARATOR

The default is '/'. Set this to '\\' for FAT to use backslash as the pathname separator character.

F_DRIVE_SEPARATOR

The drive name separator character in full pathnames. The default is ':'.

F_VOLNAME_SUPPORT

Set F_VOLNAME_SUPPORT to enable the f_setvolname() and f_getvolname() calls and the use of named
volumes. The default is 0.

F_VOLUME_CLEAN_SUPPORT

Keep the default of 1 to enable the f_volume_clean() function.

F_VOLUME_CLEAN_FILL_CHAR

The character to use for filling the unused space and directory entries. The default is 0xFF.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 25/187 www.hcc-embedded.com

Note: The following only apply if F_DIR_WALK_SUPPORT and F_VOLUME_CLEAN_SUPPORT are both set.

F_SZ_VOLUME_CLEAN_BUF1, F_SZ_VOLUME_CLEAN_BUF2, F_SZ_VOLUME_CLEAN_BUF3, F_SZ_VO
LUME_CLEAN_BUF4

A larger buffer size may make volume clean faster. The minimum size is F_SZ_MAX_SECTORn (1 to 4) and
the maximum is 64K (FAT32 max. cluster size).

The default for all four options is (1u * 1024).

Sector Size

F_DEF_SECTOR_SIZE

The default sector size in bytes used when formatting media. The default is 512. On removable media it
may be dangerous to change this value because many systems accept only FAT file systems with 512 byte
sectors.

F_MAX_SECTOR_SIZE

The maximum supported sector size of the attached media in bytes. The default is 512. Traditionally most
FAT-based devices have used a sector size of 512 bytes. However, for devices whose native sector size is
not 512 bytes (for example, 2K page NAND flash-based devices), it can be more efficient to use other
values.

F_SZ_MAX_SECTORx

The maximum sector size in bytes for each volume. The default is 512. The "x" represents the volume
number for which the cache is allocated.

A variable sector size is normally required only in systems that have removable media. If a larger than
necessary maximum sector size is set, the system uses more RAM. Therefore, in resource-constrained
systems, it may be necessary to restrict the allowed sector size.

Note: Do not attach a device with an unsupported sector size. If you do, the error
F_ERR_NOTSUPPSECTORSIZE is returned.

The cache options (FATCACHE and DIRCACHE) always allocate buffers of size F_SZ_MAX_SECTOR_SIZE. If
the attached media has a smaller sector size, it fills the buffer anyway.

For example, if FATCACHE_READAHEADx is set to 4 and F_SZ_MAX_SECTOR_SIZEx is 2048 then, if media
with 512 byte sectors are connected, the allocated FAT cache block will be 4 * 2048 bytes (that is, 8192
bytes). The read-ahead size will therefore be 16 sectors of 512 bytes each.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 26/187 www.hcc-embedded.com

Caching

FATCACHE_ENABLE

Keep this at the default of 1 to enable FAT caching.

DIRCACHE_ENABLE

Keep this at the default of 1 to enable directory caching.

FATBITFIELD_ENABLE

The default is 0. If this is enabled the system attempts to psp_malloc() a block to contain a bit table of
free clusters. This table is maintained by the file system and is used to accelerate searches for free
clusters. The table of free clusters improves writing performance substantially when writing to a large and
full disk.

This option is available only if USE_MALLOC is defined. psp_malloc() is used because the size of this area
cannot be fixed since it depends on the size and format of the attached media. The implementation of
psp_malloc() is performed in the PSP, so you can decide how this is implemented.

WR_DATACACHE_SIZE

The number of write cache entries. The default is 8. Refer to Write Caching.

F_CLUSTERBUFFER

Set this to 1 to allocate a dedicated cluster buffer for speeding up overwriting of large files in SAFEFAT
mode. The default is zero.

When USE_MALLOC is not set, the actual size of this buffer for each volume is determined by
F_N_CLUSTERBUFFERx (see below).

Volume-dependent Configuration Templates
The following options create volume-dependent configuration templates for up to four volumes, based on
the value of FAT_MAXVOLUME. In each case the "x" represents the relevant volume number. If you need
more volumes, you can add more volume-dependent settings using the existing templates.

F_N_FATCACHE_BLOCKSx

The number of FAT cache blocks on the volume. The default is 4. Refer to FAT caching.

F_N_FATCACHE_READAHEADx

The number of FAT cache readahead blocks on the volume. The maximum is 256, depending on
F_MAX_SECTOR_SIZE. The default is 8. Refer to FAT caching.

F_N_DIRCACHE_SECTORSx

The number of sectors to read ahead on the volume. The maximum is 32 (<=maximum cluster size). The
default is 8. Refer to Directory Cache.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 27/187 www.hcc-embedded.com

F_N_CLUSTERBUFFERx

The number of sectors buffered when copying clusters on the volume. Set this greater than 1 to speed up
overwriting of large files in SAFEFAT mode.

Encryption

FAT_ENCRYPTION

Set this to 1 to enable AES encryption for files. The default is 0.

Note: Do not change the following two options unless you want to replace AES128 with another type
of AES encryption.

FAT_ENC_KEY_SIZE

The encryption key size. The default is AES_128_KEY_LEN.

FAT_ENC_BLOCK_SIZE

The encryption block size. The actual sector size must be a multiple of FAT_ENC_BLOCK_SIZE. The default
is AES_BLOCK_SIZE.

5.2. config_fat.c
The memory allocated dynamically at initialization for the file system to use is controlled by the
fat_cache_sectors[] array in the file src/config/config_fat.c. This array is only used when USE_MALLOC is
set to 1; otherwise static memory buffers are used, with their sizes configured in config_fat.h.

The fat_cache_sectors[] array defines the FAT/directory cache used, based on the number of sectors
present on the media.

Set up the array to configure FATCACHE and DIRCACHE for the following volume sizes:

1024
16384
1048576
0xFFFFFFFF

For FATCACHE, specify the F_N_FATCACHE_BLOCKS and F_N_FATCACHE_READAHEAD parameters. For
DIRCACHE, specify the F_N_DIRCACHE_SECTORS.

The array contains volume sizes in increasing order and FAT takes the best matching entry when allocating
space for CACHE. The array may contain only a single non-zero element, but the trailing element must be
all-zero.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 28/187 www.hcc-embedded.com

6. Other File System Information
This section:

describes the system, stack, and real time requirements.
describes the functions FAT provides for creating and managing multiple drives, partitions and
volumes.
gives information about FAT formats that may be useful.

6.1. System Requirements
The FAT system is designed to be as open and portable as possible. No assumptions are made about the
functionality or behavior of the underlying operating system.

For the system to work at its best, perform the porting work outlined in the following sections. This is a
straightforward task for an experienced engineer.

6.2. Stack Requirements
File system functions are always called in the context of the calling thread or task. Naturally, the functions
require stack space and you should allow for this in applications that call file system functions. Typically,
calls to the file system use <2KB of stack. However if long filenames are used increase the stack size to
4KB; see Directory Cache.

6.3. Real-Time Requirements

The bulk of the file system is code that executes without delay. There are exceptions at the driver level,
where delays in reading and writing from/to the physical media, and in the communication itself, cause the
system to wait on external events. The points at which delays occur are documented in the relevant driver
documents.

Modify drivers to meet the FAT system's requirements, either by implementing interrupt control of the
relevant events, or scheduling other parts of the system that can proceed without completion of the
events. Refer to the relevant driver documents for details.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 29/187 www.hcc-embedded.com

6.4. Drives, Partitions and Volumes
FAT provides functions for creating and managing multiple drives, partitions and volumes. First, note the
following definitions:

A drive consists of a physical medium that is controlled by a single driver. Examples are an HDD and
a Compact Flash card.
All drives contain zero or more partitions. If a drive is not partitioned, there is just a single volume on
that drive.
A single volume may be added to each partition. A volume can exist on a drive without partitions.

FAT operates on volumes. You can have one volume or a set of volumes. Additional functions are provided
to work with multivolume sets (A:, B:, C:, and so on).

Note: The API functions f_getdrive(), f_chdrive(), and f_getdcwd() refer to drives by name because
this is the convention, but the names are really references to volumes.

If using multiple partitions, use the following functions to create drivers for partitioned drives, and to
create partitions on those drives:

f_initvolumepartition()
f_createdriver()
f_releasedriver()
f_createpartition()

Partitions are created on a single volume such as an HDD, so a single driver is used to access the volume
even though there are multiple partitions on it. These volumes need to be controlled by a single lock.

Note: Some operating systems do not recognize multiple partitions on removable media. It is therefore
"normal" to restrict the use of multiple partitions to fixed drives. FAT-created partitions are compatible
with Windows XP.

6.5. Drive Format
This document does not describe a FAT file system in detail as HCC's FAT system handles the majority of
the features of a FAT file system with no need for you to understand further. However, the following
information about FAT formats may be useful.

There are three different ways in which your removable media may be formatted:

Unformatted.
Formatted without partition table.
Formatted with partition table.

An unformatted drive is not useable until it has been formatted. Most flash cards are pre-formatted,
whereas hard disk drives tend to be unformatted when delivered.

The use of the f_createpartition(), f_initvolumepartition() and f_format() functions is defined in File
Management.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 30/187 www.hcc-embedded.com

6.6. Cache Setup and Options
The file system includes two caching mechanisms to enhance performance: FAT caching and Write
caching.

FAT Caching

FAT caching enables the file system to read several sectors from the FAT in one access, so that it's not
necessary to read new FAT sectors so frequently.

FAT caching is arranged in blocks so that each block can cover different areas of the FAT. The number of
sectors that each block contains and the number of blocks are configurable.

FAT caching requires 512 additional bytes of RAM per sector.

The following definitions are provided for the first volume in config_fat.h. Each volume configured needs
its own set of definitions.

#define F_SZ_MAX_SECTOR1 512
#if FATCACHE_ENABLE
 #define F_N_FATCACHE_BLOCKS1 4
 #define F_N_FATCACHE_READAHEAD1 8 /* Max 256, depending on F_MAX_SECTOR_SIZE */
#endif
#if DIRCACHE_ENABLE
 #define F_N_DIRCACHE_SECTORS1 8 /* Max of 32 (<= maximum cluster size) */
#endif

Note:

The additional RAM required for FAT caching for each configured volume is:
FATCACHE_BLOCKSx * FATCACHE_READAHEADx * F_SZ_MAX_SECTORx

The default settings shown above for the first volume require 16KB of additional RAM.

Write Caching

The write cache defines the maximum number of sectors that can be written in one operation from the
caller's data buffer. This also depends on the availability of contiguous space on the target drive.

The write cache requires an F_POS structure (24 bytes) for each entry it has. The purpose of these
structures is to be able to wind back a multi-sector write in the event of an error in writing.

The default setting for write caching in config_fat.h is:

#define WR_DATACACHE_SIZE 8

This requires 192 additional bytes of RAM.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 31/187 www.hcc-embedded.com

Directory Cache

For the directory cache to be enabled on each volume, F_LONGFILENAME must be defined.

This can be done by defining DIRCACHE_ENABLE in config_fat.h, at which time you must specify the
number of sectors to read ahead on each volume with F_N_DIRCACHE_SECTORSx. This allocates the
specified number of sectors of memory for directory caching (for example, if set to 32, 16KB of memory
will be allocated, assuming a maximum sector size of 512 is configured for that volume.).

Note: The system never reads more than the size of a cluster into this cache. Therefore, there is no
value in having a F_N_DIRCACHE_SECTORSx greater than the number of sectors per cluster on volume
x.

6.7. Use of Wildcards
Wildcard characters can be used to find files or directories. They can be used only as parameters for the
f_findfirst() function; they are then re-used when f_findnext() is called again.

The valid wildcard characters are:

Wildcard Action

* Matches any string.

? Matches any single character.,

"" Matches a string up to the end of file or the first "." or from the first "." to the end of file.
So ".*" is required to access all files or directories in the target directory.

Note: If you want to perform a logical operation such as fdelete("."), you need to call f_findfirst() or
f_findnext() repeatedly. When each name is returned in the F_FIND structure, you must use that as a
parameter to f_delete().

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 32/187 www.hcc-embedded.com

7. Application Programming Interface
This section describes all the Application Programming Interface (API) functions. It includes all the
functions that are available to an application program.

7.1. Module Management
The functions are the following:

Function Description

fs_init() Initializes the file system and allocates the required resources.

fs_start() Starts the file system.

fs_stop() Stops the file system.

fs_delete() Releases resources allocated during the initialization of the file system.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 33/187 www.hcc-embedded.com

fs_init

Use this function to initialize the file system. Call it once at start-up.

Data areas for the file system to use are allocated at compile time, as follows:

If USE_MALLOC is set to 0, allocation is based on the settings for each volume in the
src/config/config_fat.h file.
If USE_MALLOC is set to 1, allocation is controlled by the fat_cache_sectors[] array in the file
config_fat.c.

Format

int fs_init (void)

Arguments

None.

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void main()
{
 fs_init(); /* Initialize the file system */
 fs_start(); /* Start the file system */
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 34/187 www.hcc-embedded.com

fs_start

Use this function to start the file system.

This function must complete successfully before the file system can be used.

Note: Call fs_init() before this to initialize the file system.

Format

int fs_start (void)

Arguments

None.

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 35/187 www.hcc-embedded.com

fs_stop

Use this function to stop the file system.

After this, the file system cannot be used until a new call to fs_start() is successfully completed.

Format

int fs_stop (void)

Arguments

None.

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 36/187 www.hcc-embedded.com

fs_delete

Use this function to to release resources allocated during the initialization of the file system.

Note: All volumes must be deleted before this function is called.

Format

int fs_delete (void)

Arguments

None.

Return values

Return value Description

F_NO_ERROR Successful execution.

F_ERR_BUSY A volume has not been deleted and this prevented the successful completion of this
function.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 37/187 www.hcc-embedded.com

7.2. File System API
This section describes all the Application Programming Interface (API) functions available, apart from
Unicode functions. It is split into functions for general, volume, and directory management, file access and
file management.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 38/187 www.hcc-embedded.com

General Management

The functions are the following:

Function Description

f_enterFS() Creates resources for the calling task in the file system and allocates a current
working directory for that task.

f_releaseFS() Releases a previously assigned unique task ID.

f_getlasterror() Returns the last error code.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 39/187 www.hcc-embedded.com

f_enterFS

Use this function to create resources for the calling task in the file system and allocate a current working
directory for that task.

Note:

If the target system allows multiple tasks to use the file system, this function must be called by a
task before it uses any other file management API functions.
For the correct operation of this function, oal_get_task_id() in the OS Abstraction Layer must have
been ported to give a unique identifier for each task.

f_releaseFS() must be called to release the task from the file system and free the allocated resource. If
the system is a single task-based system, also call this function after calling fs_init().

Format

int f_enterFS (void)

Arguments

None.

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void main()
{
 fs_init(); /* Initialize the file system */
 fs_start(); /* Start the file system */
 f_enterFS(); /* Allow the current (only) task to access the file system */
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 40/187 www.hcc-embedded.com

f_releaseFS

Use this function to release the file system from the calling task.

This function releases the entry so another slot is available for tasks to be able to use the file system.
You must call it if a given task is released or no longer exists.

Format

void f_releaseFS (void)

Arguments

None.

Return values

None.

Example

void task_destructor()
{
 f_releaseFS(); /* Release the current task ID */
 .
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 41/187 www.hcc-embedded.com

f_getlasterror

Use this function to return the last error code.

The last error code is cleared/changed when any API function is called.

Format

int f_getlasterror ()

Arguments

None.

Return values

Return value Description

Error code The last error code.

Example

int myopen()
{
 F_FILE *file;
 file = f_open("nofile.tst", "rb");
 if (!file)
 {
 int rc = f_getlasterror();
 printf("f_open failed, errorcode:%d\n", rc);
 return rc;
 }

 return F_NO_ERROR;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 42/187 www.hcc-embedded.com

Volume Management
Note: The API functions f_getdrive(), f_chdrive() and f_getdcwd() use the term "drive" because this
is the convention. This is equivalent to the term "volume".

The functions are the following:

Function Description

f_initvolume() Initializes a volume.

f_initvolume_nonsafe() Initializes a volume. (The drive will be a standard FAT drive.)

f_delvolume() Deletes an existing volume.

f_checkvolume() Checks the status of a drive that has been initialized.

f_repair() Repairs a SafeFAT file system.

f_setvolname() Sets the name of a volume.

f_getvolname() Gets the name of a volume.

f_get_oem() Returns the OEM name in the disk boot record.

f_get_volume_count() Gets the number of volumes currently available to the user.

f_get_volume_list() Gets a list of volumes currently available to the user.

f_initvolumepartition() Initializes a volume on an existing partition.

f_initvolumepartition_nonsafe() Initializes a volume on an existing partition. (The drive will be a
standard FAT drive.)

f_format() Formats the specified drive.

f_createpartition() Creates one or more partitions on a drive, or removes partitions by
overwriting the current partition table.

f_createpartition_align() Creates one or more partitions on a drive, drive, aligned to given
sector boundaries, or removes partitions by overwriting the current
partition table.

f_getpartition() Gets the used sectors and system indication byte from a partitioned
medium.

f_createdriver() Initializes a driver.

f_releasedriver() Releases a driver when it is no longer required.

f_chdrive() Changes to a new current drive.

f_getdrive() Gets the current drive number.

f_getfreespace() Fills a structure with information about the drive space usage: total
space, free space, used space, and bad (damaged) size.

f_getlabel() Returns the label as a function value.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 43/187 www.hcc-embedded.com

Function Description

f_setlabel() Sets a volume label.

f_get_cluster_size() Gets the cluster size used on a volume.

f_volume_clean() Runs a volume clean.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 44/187 www.hcc-embedded.com

f_initvolume

Use this function to initialize a volume. Call it with a pointer to the driver function that must be called to
retrieve drive configuration information from the relevant driver.

This function works independently of the status of the hardware; that is, it does not matter whether a card
is inserted or not.

In non-multitask systems f_initvolume() must be followed by an f_chdrive() function to select the
current drive for relative file path accessing. In a multitask system every f_enterFS() function needs to be
followed by an f_chdrive() function if the task is using drive relative accessing.

f_initvolume() always initiates the first partition on the media. To use multiple partitions, use
f_initvolumepartition().

Format

int f_initvolume (
 int drvnumber,
 F_DRIVERINIT driver_init,
 unsigned long driver_param)

Arguments

Argument Description Type

drvnumber The drive to initialize (0='A', 1='B', and so on). int

driver_init The initialization function for the driver. F_DRIVERINIT

driver_param This can optionally be used to pass information to the low level driver. Its
use is driver-dependent. When the xxx_initfunc() of the driver is called,
this parameter is passed to the driver.
One use for this is to specify which device associated with the specified
driver will be initialized. For more information, refer to the Media Driver
manuals.

unsigned long

Return values

Return value Description

F_NO_ERROR Successful execution.

F_ERR_CARDREMOVED The volume has been successfully created; f_initvolume() does not need to be
called again. When a card is inserted, the volume will be fully functional.

Else See Error Codes.

https://doc.hcc-embedded.com/hcc-documentation/file-system-media-drivers
https://doc.hcc-embedded.com/hcc-documentation/file-system-media-drivers

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 45/187 www.hcc-embedded.com

Example

void myinitfs(void)
{
 int ret;
 fs_init(); /* Initialize the file system */
 fs_start(); /* Start the file system */
 f_enterFS();

 /* Create a RAM volume on Drive A */
 f_initvolume(0, ram_initfunc, 0);

 /* Create a Compact Flash Volume on Drive B */
 f_initvolume(1, cfc_initfunc, 0);

 /* Create an MMC Volume on Drive C */
 f_initvolume(2, mmc_initfunc, 0);

 /* Create a Mass Storage Volume on Drive D */
 f_initvolume(3, mst_initfunc, 0);

 /* Create a second Mass Storage Volume on Drive E */
 f_initvolume(4, mst_initfunc, 1);
 .
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 46/187 www.hcc-embedded.com

f_initvolume_nonsafe

Use this function to initialize a volume.

Call the function with a pointer to the driver function that must be called to retrieve drive configuration
information from the relevant driver. It works independently of the status of the hardware; that is, it does
not matter whether a card is inserted or not.

Note: If this function is used instead of f_initvolume(), the drive will be a standard FAT drive. It will
not be protected by the SafeFAT journaling mechanisms.

This function can be used to obtain a mix of drive types, perhaps to allow a faster non-secure drive for less
critical data.

In non-multitask systems f_initvolume_nonsafe() must be followed by an f_chdrive() function to select
the current drive for relative file path accessing. In a multitask system every f_enterFS() must be followed
by f_chdrive() if the task is using drive relative accessing.

This function always initiates the first partition on the media. To use multiple partitions, use
f_initvolumepartition_nonsafe().

Format

int f_initvolume_nonsafe (
 int drvnumber,
 F_DRIVERINIT driver_init,
 unsigned long driver_param)

Arguments

Argument Description Type

drvnumber The drive to initialize (0='A', 1='B', and so on). int

driver_init The initialization function for the driver. F_DRIVERINIT

driver_param This can optionally be used to pass information to the low level driver. Its
use is driver-dependent.
When the xxx_initfunc of the driver is called, this parameter is passed to
the driver.
One use for this is to specify which device associated with the specified
driver will be initialized.
For more information, refer to the Media Driver manuals .

unsigned long

https://doc.hcc-embedded.com/hcc-documentation/file-system-media-drivers

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 47/187 www.hcc-embedded.com

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myinitfs(void)

{
 int ret;
 fs_init(); /* Initialize the file system */
 fs_start(); /* Start the file system */
 f_enterFS();

 /* Create a RAM volume on Drive A */
 f_initvolume_nonsafe(0, ram_initfunc, 0);

 /* Create a Compact Flash Volume on Drive B */
 f_initvolume_nonsafe(1, cfc_initfunc, 0);

 /* Create an MMC Volume on Drive C */
 f_initvolume_nonsafe(2, mmc_initfunc, 0);

 /* Create a Mass Storage Volume on Drive D */
 f_initvolume_nonsafe(3, mst_initfunc, 0);

 /* Create a second Mass Storage Volume on Drive E */
 f_initvolume_nonsafe(4, mst_initfunc, 1);
 .
 .

}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 48/187 www.hcc-embedded.com

f_delvolume

Use this function to delete an existing volume.

Note that:

The link between the file system and the driver is broken; that is, an xxx_release() call is made to
the driver.
Any open files on the media are marked as closed, so that subsequent API accesses of a previously
opened file handle return an error.
If the volume’s driver was created independently by using f_createdriver(), this function deletes
only the volume. Call f_releasedriver() to call xxx_release() driver functions.

This function works independently of the status of the hardware; that is, it does not matter whether a card
is inserted or not.

Format

int f_delvolume (int drivenum)

Arguments

Argument Description Type

drivenum The drive to delete (0='A', 1='B', and so on). int

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void mydelfs(int num)
{
 int ret;

 /* Delete volume */
 if (f_delvolume(num))
 printf("Unable to delete volume %c", 'A' + num);
 .
 .

}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 49/187 www.hcc-embedded.com

f_checkvolume

Use this function to check the status of an initialized drive.

Format

int f_checkvolume (int drivenum)

Arguments

Argument Description Type

drivenum The drive to check (0='A', 1='B', and so on). int

Return values

Return value Description

F_NO_ERROR The drive is working.

Else See Error Codes.

Example

void mychkfs(int num)
{
 int ret;

 /* Checking volume */
 if (f_checkvolume(num))
 {
 printf("Volume %d is not usable, Error %d", num, ret);
 }
 else
 {
 printf("Volume %d is working, no error", num);
 }
 .
 .

}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 50/187 www.hcc-embedded.com

f_repair

Use this function to repair a SafeFAT file system.

Note: If F_SAFE_AUTO_REPAIR is set, this function is not available as the system is repaired
automatically at power-on.

Format

int f_repair (int drivenum)

Arguments

Argument Description Type

drivenum The volume number to repair (0='A', 1='B', and so on). int

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

ret = f_initvolume(drivenum, mmcsd_initfunc, driver_param);

if (ret == F_ERR_REPAIRNEEDED)
{
 ret = f_repair(drivenum);
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 51/187 www.hcc-embedded.com

f_setvolname

Use this function to set the name of a volume.

The volume name is the human-readable name given to a volume. This name is stored in the
microcontroller’s RAM only; it is not written to the media itself.

For example, suppose you have two volumes: volume 0 is SPI NAND and volume 1 is an SD card. You could
use f_setvolname (0, “spi”) and f_setvolname(1, “sd”).

You could access files on the SPI with f_open(“spi:my_file”) and files on the SD card
with f_open(“sd:/other_file”).

Note: F_VOLNAME_SUPPORT must be set to enable this function.

Format

int f_setvolname (
 int drivenum,
 const char * p_name)

Arguments

Argument Description Type

drivenum The volume number (0='A', 1='B', and so on). int

p_name The name to give the volume. This must be at least two characters long and null-
terminated.

char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 52/187 www.hcc-embedded.com

Example

void setvolname(void)
{
 int ret;

 ret = f_setvolname(f_getdrive(), "sdcard");
 if (ret == F_NO_ERROR)
 {
 ret = f_mkdir("sdcard:/testdir");
 }
 else
 {
 printf("Error during setting volname!\r\n");
 }
 if (ret == F_NO_ERROR)
 {
 ret = f_mkdir("sdcard:/testdir/testdir2");
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 53/187 www.hcc-embedded.com

f_getvolname

Use this function to get the name of a volume.

Note: F_VOLNAME_SUPPORT must be set to enable this function.

Format

int f_getvolname (
 int drivenum,
 char * p_buffer,
 int maxlen)

Arguments

Argument Description Type

drivenum The volume number (0='A', 1='B', and so on). int

p_buffer Where to store the name of the volume. char *

maxlen The buffer length (the maximum size is F_MAXPATHNAME). int

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void getvolname(void)
{
 int ret;
 char volname[8];

 ret = f_getvolname(f_getdrive(), volname, sizeof(volname));
 if (ret == F_NO_ERROR)
 {
 printf("Volume name is '%s'\r\n", volname);
 }
 else
 {
 printf("Error on drive!\r\n");
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 54/187 www.hcc-embedded.com

f_get_oem

Use this function to return the OEM name in the disk boot record.

Format

int f_get_oem (
 int drivenum,
 char * str,
 long len)

Arguments

Argument Description Type

drivenum The drive number (0='A', 1='B', and so on). int

str Where to copy the label to. This should be able to hold an eight character string. char *

len The length of the storage area. long

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void get_disk_oem(void)
{
 char oem_name[9];
 int result;

 oem_name[8] = 0; /* Zero-terminate string */
 result = f_get_oem(f_getdrive(), oem_name, 8);

 if (result)
 {
 printf("Error on drive!");
 }
 else
 {
 printf("Drive OEM is %s", oem_name);
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 55/187 www.hcc-embedded.com

f_get_volume_count

Use this function to obtain the number of active volumes.

Format

int f_get_volume_count (void)

Arguments

None.

Return values

Return value Description

num The number of active volumes.

Else See Error Codes.

Example

void mygetvols(void)
{
 printf("There are %d active volumes\n", f_get_volume_count());
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 56/187 www.hcc-embedded.com

f_get_volume_list

Use this function to obtain a list of all the active volumes.

Format

int f_get_volume_list (int * buffer)

Arguments

Argument Description Type

buffer Where to store the volume list. The storage should be of size FAT_MAXVOLUME. int *

Return values

Return value Description

number The number of active volumes.

Else See Error Codes.

Example

void mygetvols(void)
{
 int i, j;
 int buffer[F_MAXVOLUME];

 i = f_get_volume_list(buffer);

 if (!i) printf("No active volume found\n");

 for (j = 0; j<i; j++)
 {
 printf("Volume %d is active\n", buffer[j]);
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 57/187 www.hcc-embedded.com

f_initvolumepartition

Use this function to initialize a volume on an existing partition.

Call this function with a common driver structure pointer that can be retrieved by calling f_createdriver().
This driver pointer can be used for initializing all existing partitions on the media.

If only the first partition is used, use f_initvolume() instead.

Format

int f_initvolumepartition (
 int drvnumber,
 F_DRIVER * driver,
 int partition)

Arguments

Argument Description Type

drvnumber The drive to initialize (0='A', 1='B', and so on). int

driver A pointer to the initialized driver; get this by calling f_createdriver(). F_DRIVER *

partition The partition to build. int

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 58/187 www.hcc-embedded.com

Example

F_DRIVER *hdd;

int myinitfs(void)
{

 int ret;

 fs_init(); /* Initialize the file system */
 fs_start(); /* Start the file system */
 f_enterFS();

 ret = f_createdriver(&hdd, hdd_initfunc, 0);
 if (ret) return ret;

 ret = f_initvolumepartition(0, hdd, 0);
 if (ret) return ret;

 ret = f_initvolumepartition(1, hdd, 1);

 return ret;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 59/187 www.hcc-embedded.com

f_initvolumepartition_nonsafe

Use this function to initialize a volume on an existing partition.

Call this function with a common driver structure pointer that can be retrieved by calling f_createdriver().
This driver pointer can be used for initializing all existing partitions on the media.

Note:

If this call is used instead of f_initvolumepartition(), the drive will be a standard FAT drive; it will
not be protected by the SafeFAT journaling mechanisms.
If only the first partition is used, use f_initvolume_nonsafe() instead.

This function can be used to obtain a mix of drive types, perhaps to allow a faster non-secure drive for less
critical data.

Format

int fm_initvolumepartition_nonsafe (
 int drvnumber,
 F_DRIVER * driver,
 int partition)

Arguments

Argument Description Type

drvnumber The drive to initialize (0='A', 1='B', and so on). int

driver A pointer to the initialized driver; get this by calling f_createdriver(). F_DRIVER *

partition The partition to be built. int

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 60/187 www.hcc-embedded.com

Example

F_DRIVER *hdd;

int myinitfs(void)

{
 int ret;

 fs_init(); /* Initialize the file system */
 fs_start(); /* Start the file system */
 f_enterFS();

 ret = f_createdriver(&hdd, hdd_initfunc, 0);

 if (ret) return ret;
 ret = f_initvolumepartition_nonsafe(0, hdd, 0);

 if (ret) return ret;
 ret = f_initvolumepartition_nonsafe(1, hdd, 1);

 return ret;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 61/187 www.hcc-embedded.com

f_format

Use this function to format the specified drive.

If the media is not present, this function fails. If it succeeds, all data on the specified volume are destroyed
and any open files are closed.

Any existing master boot record is unaffected by this command. The boot sector information is re-created
from the information provided by f_getphy().

Note: The format operation fails if the specified format type is incompatible with the size of the
physical media.

Format

int f_format (
 int drivenum,
 long fattype)

Arguments

Argument Description Type

drivenum The drive to format (0='A', 1='B', and so on). int

fattype The type of format:
• F_FAT12_MEDIA for FAT12
• F_FAT16_MEDIA for FAT16
• F_FAT32_MEDIA for FAT32

long

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 62/187 www.hcc-embedded.com

Sectors per cluster

The number of sectors per cluster on a FAT32 drive is determined by the table below, which is included in
the fat.c and fat_lfn.c files. The table specifies the number of sectors (in hex) on the target device;
alongside these, the second number gives the number of sectors per cluster. This table may be modified if
required.

static const t_FAT32_CS FAT32_CS[] =
{
/* {Up to this number of sectors, this is sectors/cluster} */

 { 0x00020000, 1 }, /* ->64MB */
 { 0x00040000, 2 }, /* ->128MB */
 { 0x00080000, 4 }, /* ->256MB */
 { 0x01000000, 8 }, /* ->8GB */
 { 0x02000000, 16 }, /* ->16GB */
 { 0x0FFFFFF0, 32 } /* -> ... */
};

Example

void myinitfs(void)
{
 int ret;

 fs_init(); /* Initialize the file system */
 fs_start(); /* Start the file system */
 f_enterFS();

 f_initvolume(0, cfc_initfunc, 0);

 ret=f_format(0, F_FAT16_MEDIA);

 if (ret)
 {
 printf("Unable to format CFC: Error %d", ret);
 }
 else
 {
 printf("CFC formatted");
 }
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 63/187 www.hcc-embedded.com

f_createpartition

Use this function to create one or more partitions on a drive, or to remove partitions by overwriting the
current partition table.

The partition table is placed in the master boot sector (sector 0) and the first partition is placed at sector
16 (offset by 15 from the boot record). The partitions then follow contiguously as defined in the partition
table.

If n = sector count of the media - 16, then n sectors can be divided between the partitions. If a partition's
size is not aligned to 16 sectors, the remaining 1 .. 15 sectors cannot be used by the next partition.

To find the number of sectors on the target drive, call the driver->getphy(driver,&phy). You can use this
information to build the F_PARTITION structure before you call f_createpartition().

Note:

Calling this function logically destroys all data on the drive.
If partition alignment is required, use f_createpartition_align() instead of this call.
If only a single volume is required, it is simpler not to use a partition table but to use
f_initvolume() to format it.

Format

int f_createpartition (
 F_DRIVER * driver,
 int parnum,
 F_PARTITION * par)

Arguments

Argument Description Type

driver The initialized driver; get this by calling f_createdriver(). F_DRIVER *

parnum The number of partitions in the partitions table. int

par A pointer to the partition descriptor. F_PARTITION *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 64/187 www.hcc-embedded.com

Example

static F_PARTITION par2[2] =
{
 {1000, F_SYSIND_DOSFAT16UPTO32MB, 0},
 {2000, F_SYSIND_DOSFAT16UPTO32MB, 0}
};

F_DRIVER *hdd;

int mypartitiondrive()
{
 int ret;

 fs_init(); /* Initialize the file system */
 fs_start(); /* Start the file system */
 f_enterFS();

 ret = f_createdriver(&hdd, hdd_initfunc, 0);
 if (ret) return ret;

 ret = f_createpartition(hdd, 2, par2);
 if (ret) return ret;

 return ret;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 65/187 www.hcc-embedded.com

f_createpartition_align

Use this function to create one or more partitions on a drive, aligned to given sector boundaries, or to
remove partitions by overwriting the current partition table.

Note:

Calling this function logically destroys all data on the drive.
If partition alignment is not required, you can use f_createpartition() instead of this call.
If only a single volume is required, it is simpler not to use a partition table but to use
f_initvolume() to format it.

To find the number of sectors on the target drive, call the driver->getphy(driver,&phy). You can use this
information to build the F_PARTITION structure before you call f_createpartition_align().

Format

int f_createpartition_align (
 F_DRIVER * driver,
 int parnum,
 F_PARTITION * par,
 int sec_align)

Arguments

Argument Description Type

driver The initialized driver; get this by calling f_createdriver(). F_DRIVER *

parnum The number of partitions in the partitions table. int

par A pointer to the partition descriptor. F_PARTITION *

sec_align The number of sectors to align each partition to. int

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 66/187 www.hcc-embedded.com

Example

static F_PARTITION par2[2] =
{
 {1000, F_SYSIND_DOSFAT16UPTO32MB, 0},
 {2000, F_SYSIND_DOSFAT16UPTO32MB, 0}
};

F_DRIVER *hdd;

int mypartitiondrive()
{
 int ret;

 fs_init(); /* Initialize the file system */
 fs_start(); /* Start the file system */
 f_enterFS();

 ret = f_createdriver(&hdd, hdd_initfunc, 0);
 if (ret) return ret;

 ret = f_createpartition_align(hdd, 2, par2, 8);
 if (ret) return ret;

 return ret;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 67/187 www.hcc-embedded.com

f_getpartition

Use this function to get the used sectors and system indication byte from a partitioned medium.

For drives that do not contain a partition table, this function returns with the number of sectors and 0 in
the system indication byte. If there is a partition table, the function collects information from the partition
table entries.

Format

int f_getpartition (
 F_DRIVER * driver,
 int parnum,
 F_PARTITION * par)

Arguments

Argument Description Type

driver The initialized driver; get this by calling f_createdriver(). F_DRIVER *

parnum The number of the entry in the par parameter. int

par The partition pointer to retrieve information from. F_PARTITION *

Return values

Return value Description

F_NO_ERROR Successful execution.

F_ERR_MEDIATOOLARGE The space in the F_PARTITION table is insufficient. The medium has more
partition table entries than the number passed by the table structure, so
increase the number of entries in this table.

Else See Error Codes.

F_PARTITION

The F_PARTITION structure is defined as:

typedef struct
{
 unsigned long secnum; /* Number of sectors in this partition */
 unsigned char system_indicator; /* Use F_SYSIND_XX values */
} F_PARTITION;

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 68/187 www.hcc-embedded.com

Example

static F_PARTITION par10[10];

int mypartitionlist(F_DRIVER *driver)
{
 int par;
 int ret = f_getpartition(driver, 10, par10);
 if (ret) return ret; /* Error */

 for (par=0; par<10; par++)
 {
 printf("%d par - %d sys_ind %d sectors\n", par, par[10].secnum,
 par10[par].system_indicator);
 }
 return 0;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 69/187 www.hcc-embedded.com

f_createdriver

Use this function to initialize a driver.

This function is necessary only if multiple partitions are used. It works independently of the status of the
hardware; it does not matter whether a card is inserted or not.

Note: If f_initvolume() is used to initiate a volume, this function is not required as it is called
automatically.

On a drive that was created directly with this function, you must call f_releasedriver() to release the
driver.

Format

int f_createdriver (
 F_DRIVER * * driver,
 F_DRIVERINIT driver_init,
 unsigned long driver_param)

Arguments

Argument Description Type

driver A pointer to the F_DRIVER structure of the required driver. F_DRIVER * *

driver_init A pointer to the initialization function for the driver. (This must be called
to retrieve drive configuration information from the relevant driver.)

F_DRIVERINIT

driver_param This can optionally be used to pass information to the low level driver. Its
use is driver-dependent. When the xxx_initfunc() of the driver is called,
this parameter is passed to the driver. One use is to specify which device
associated with the specified driver is to be initialized.
For more details, see the HCC Media Driver Interface Guide.

unsigned long

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

https://doc.hcc-embedded.com/media-driver-interface-guide

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 70/187 www.hcc-embedded.com

Example

F_DRIVER *hdd;
 int myinitfs(void)
{
 int ret;

 fs_init(); /* Initialize the file system */
 fs_start(); /* Start the file system */
 f_enterFS();

 ret = f_createdriver(&hdd, hdd_initfunc, 0);
 if (ret) return ret;

 ret = f_initvolumepartition(0, hdd, 0);
 if (ret) return ret;

 ret = f_initvolumepartition(1, hdd, 1);

 return ret;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 71/187 www.hcc-embedded.com

f_releasedriver

Use this function to release a driver when it is no longer required. After this f_initvolume() or
f_createdriver() can be called again.

Use of the function depends on how the driver was created:

If the driver was created by f_initvolume(), do not call this function; f_delvolume() releases the
driver automatically.
If the driver was created by f_createdriver() then, after f_delvolume() has been called for each
volume on this drive, call f_releasedriver() to release the driver.
If the driver was created by f_createdriver() and f_releasedriver() is called, f_delvolume() is
called automatically for each volume on this drive.

Format

int f_releasedriver (
 F_DRIVER * driver,
 int partition)

Arguments

Argument Description Type

driver The initialized driver; get this by calling f_createdriver(). F_DRIVER *

partition The partition number. int

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 72/187 www.hcc-embedded.com

Example

F_DRIVER *hdd;

int myinitfs(void)
{
 int ret;

 fs_init(); /* Initialize the file system */
 fs_start(); /* Start the file system */
 f_enterFS();

 ret = f_createdriver(&hdd, hdd_initfunc, 0);
 if (ret)
 return ret;

 ret = f_initvolumepartition(0, hdd, 0);
 if (ret)
 return ret;

 ret = f_initvolumepartition(1, hdd, 1);

 return ret;
}

int myclose(void)
{
 return f_releasedriver(hdd);
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 73/187 www.hcc-embedded.com

f_chdrive

Use this function to change to a new current drive.

In non-multitasking and multitasking systems, call f_chdrive() if you need relative path access. In a
multitasking system, and in a non-multitasking system after f_initvolume(), every f_enterFS() must be
followed by an f_chdrive() function call. In a multitasking system every task has its own current drive.

Format

int f_chdrive (int drivenum)

Arguments

Argument Description Type

drivenum The number of the drive to change to (0='A', 1='B', and so on). int

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myfunc(void)
{
 .
 .
 f_chdrive(0); /* Select drive A */
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 74/187 www.hcc-embedded.com

f_getdrive

Use this function to get the current drive number.

Format

int f_getdrive (void)

Arguments

None.

Return values

Return value Description

Current drive The drive number (0='A', 1='B', and so on).

Else See Error Codes.

Example

void myfunc(void)
{
 int currentdrive;
 .
 currentdrive = f_getdrive();
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 75/187 www.hcc-embedded.com

f_getfreespace

Use this function to fill a structure with information about the drive space usage: total space, free space,
used space, and bad (damaged) size.

Note:

If a drive is greater than 4GB, also read the high elements of the returned structure (for example,
pspace.total_high) to get the upper 32 bits of each number.
The first call to this function after a drive is mounted may take some time, depending on the size
and format of the medium being used. After the initial call, changes to the volume are counted; the
function then returns immediately with the data.

Format

int f_getfreespace (
 int drivenum,
 F_SPACE * pspace)

Arguments

Argument Description Type

drivenum The drive number (0='A', 1='B', and so on). int

pspace A pointer to the F_SPACE structure. F_SPACE *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 76/187 www.hcc-embedded.com

Example

void info(void)
{
 F_SPACE space;
 int ret;

 /* Get free space on current drive */
 int ret = f_getfreespace(f_getdrive(), &space);

 if (!ret)
 {
 printf("There are:\
 %d bytes total,\
 %d bytes free,\
 %d bytes used,\
 %d bytes bad.",\
 space.total, space.free, space.used, space.bad);
 }
 else
 {
 printf("\nError %d reading drive\n", ret);
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 77/187 www.hcc-embedded.com

f_getlabel

Use this function to return the label as a function value.

Format

int f_getlabel (
 int drivenum,
 char * pLabel,
 long len)

Arguments

Argument Description Type

drivenum The drive number (0='A', 1='B', and so on). int

pLabel Where to copy the label to. This should be able to hold an 11 character string. char *

len The length of the storage area. long

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void getlabel(void)
{
 char label[12];
 int result;

 result = f_getlabel(f_getdrive(), label, sizeof(label));

 if (result)
 {
 printf("Error on drive!");
 }
 else
 {
 printf("Label of drive is %s", label);
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 78/187 www.hcc-embedded.com

f_setlabel

Use this function to set a volume label.

This changes the label of the volume and this label is written to the media. If the media is inserted in a PC,
the host OS can display it.

Format

int f_setlabel (
 int drivenum,
 const char * pLabel)

Arguments

Argument Description Type

drivenum The drive number (0='A', 1='B', and so on). int

pLabel A pointer to the null-terminated string to use.
This must be an ASCII string with a maximum length of 11 characters. Non-printable
characters are padded out as space characters.

char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void setlabel(void)
{
 int result = f_setlabel(f_getdrive(), "DRIVE 1");

 if (result)
 printf("Error on drive!");
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 79/187 www.hcc-embedded.com

f_get_cluster_size

Use this function to get the cluster size used on a volume.

Format

int f_get_cluster_size (
 F_MULTI * fm,
 int drivenum,
 uint32_t * p_cluster_size_bytes)

Arguments

Argument Description Type

fm A multi-structure pointer. F_MULTI *

drivenum The volume number (0='A', 1='B', and so on). int

p_cluster_size_bytes On return, a pointer to the size of the allocation unit in bytes. uint32_t *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void cluster_size(void)
{
 int rc;
 uint32_t cluster_size_bytes;

 rc = f_get_cluster_size(0, &cluster_size_bytes);
 if (rc == F_NO_ERROR)
 {
 printf("Cluster size: %u bytes\r\n", cluster_size_bytes);
 }
 else
 {
 printf("Error: %i\r\n", rc);
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 80/187 www.hcc-embedded.com

f_volume_clean
Use this function to run a volume clean. This operation:

erases all free clusters.1.
walks the directories and overwrites all deleted directory entries.2.
finds all files and erases all slack space.3.

Note:

No files on the volume can be open.
This is a non-recursive implementation.

Format

int f_volume_clean (
 int drvnumber,
 FN_FIND * p_find,
 t_volume_clean_cb_fn * p_callback,
 void * p_user_data)

Arguments

Argument Description Type

drvnumber The drive to clean (0='A', 1='B', and so on). int

p_find The structure used to find files. FN_FIND *

p_callback A pointer to callback function, which is called for every item
(directory, file, and cluster) to forward progress.

t_volume_clean_cb_fn *

p_user_data A pointer to user-defined data, this is passed to the callback
function.

void *

Return values

Return value Description

0 Successful execution.

F_ERR_BUSY Failed because there are opened files on the volume.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 81/187 www.hcc-embedded.com

Example

cvoid volume_clean_example(int vol_id)
{
 int ret;
 F_FIND find;
 uint32_t my_data = 42;

 ret = f_volume_clean(vol_id, &find, progress_callback, &my_data);
 if (ret != F_NO_ERROR)
 {
 printf("Error: %i\r\n", ret);
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 82/187 www.hcc-embedded.com

This example code shows the callback used:

int progress_callback (void * p_user_data
 , t_volume_clean_stage_type stage
 , uint32_t total
 , uint32_t cmplt)
{
 float percent = 100.f;
 static int prev_percent10 = -1; /* percent multiplied by 10 */
 const char * stage_str[] = {
 "Metadata"
 , "Free space"
 , "Backend"
 , "Complete"
 };
 uint32_t * p_my_data = (uint32_t*) p_user_data;

 if (*p_my_data != 42)
 {
 /* Internal error! */
 return 1;
 }

 if (total > 0)
 {
 percent = 100.0f * (float)cmplt / (float)total;
 }

 if (stage < VOLUME_CLEAN_STAGE_BACKEND)
 {
 if (prev_percent10 != (int)(percent * 10.0f))
 {
 printf("\r%.1f%% completed, items processed %i/%i, stage: %s\t", percent,
cmplt, total, stage_str[stage]);
 prev_percent10 = (int)(percent * 10.0f);
 }
 }
 else if (stage == VOLUME_CLEAN_STAGE_BACKEND)
 {
 printf("\n");
 printf("Flushing buffers...\n");
 }
 else
 {
 printf("Completed.\n");
 }

 return 0;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 83/187 www.hcc-embedded.com

Directory Management

The functions are the following:

Function Description

f_mkdir() Creates a new directory.

f_chdir() Changes the current working directory.

f_rmdir() Removes a directory.

f_getcwd() Gets the current working directory.

f_getdcwd() Gets the current working directory on the selected drive.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 84/187 www.hcc-embedded.com

f_mkdir

Use this function to create a new directory.

Format

int f_mkdir (const char * dirname)

Arguments

Argument Description Type

dirname The name of the directory to create. char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myfunc(void)
{
 .
 .
 f_mkdir("subfolder"); /* Create directories */
 f_mkdir("subfolder/sub1");
 f_mkdir("subfolder/sub2");
 f_mkdir("a:/subfolder/sub3");
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 85/187 www.hcc-embedded.com

f_chdir

Use this function to change the current working directory.

Every relative path starts from this directory. In a multitasking system every task has its own current
working directory.

Format

int f_chdir (const char * dirname)

Arguments

Argument Description Type

dirname A null-terminated string containing the name of the directory to change to. char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myfunc(void)
{
 .
 .
 f_mkdir("subfolder");
 f_chdir("subfolder"); /* Change directory */
 f_mkdir("sub2");
 f_chdir(".."); /* Go up one directory level */
 f_chdir("subfolder/sub2"); /* Go into directory sub2 */
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 86/187 www.hcc-embedded.com

f_rmdir

Use this function to remove a directory.

The function returns an error code if:

The target directory is not empty.
The directory is read-only.

Format

int f_rmdir (const char * dirname)

Arguments

Argument Description Type

dirname The name of the directory to remove. char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myfunc(void)
{
 .
 .
 f_mkdir("subfolder"); /* Create directories */
 f_mkdir("subfolder/sub1");
 .
 . /* Do some work */
 .
 f_rmdir("subfolder/sub1"); /* Remove directories */
 f_rmdir("subfolder");
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 87/187 www.hcc-embedded.com

f_getcwd

Use this function to get the current working directory on the current drive.

Format

int f_getcwd (
 char * buffer,
 int maxlen)

Arguments

Argument Description Type

buffer Where to store the current working directory string. char *

maxlen The length of the buffer. int

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

#define BUFFLEN F_MAXPATH + F_MAXNAME

void myfunc(void)
{
 char buffer[BUFFLEN];

 if (!f_getcwd(buffer, BUFFLEN))
 {
 printf("Current directory is %s", buffer);
 }
 else
 {
 printf("Drive error!")
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 88/187 www.hcc-embedded.com

f_getdcwd

Use this function to get the current working directory on the selected drive.

Format

int f_getdcwd (
 int drivenum,
 char * buffer,
 int maxlen)

Arguments

Argument Description Type

drivenum The drive number (0='A', 1='B', and so on). int

buffer Where to store the current working directory string. char *

maxlen The length of the buffer. int

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

#define BUFFLEN F_MAXPATH + F_MAXNAME

void myfunc(long drivenum)
{
 char buffer[BUFFLEN];

 if (!f_getdcwd(drivenum, buffer, BUFFLEN))
 {
 printf("Current directory is %s", buffer);
 printf("on drive %c", drivenum+'A');
 }
 else
 {
 printf("Drive error!")
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 89/187 www.hcc-embedded.com

File Access

The functions are the following:

Function Description

f_open() Opens a file.

f_open_enc() Opens an encrypted file.

f_open_nonsafe() Opens a file without the journaling enabled.

f_close() Closes a file.

f_abortclose() Closes a previously opened file, aborting all operations.

f_flush() Flushes an opened file to a storage medium.

f_read() Reads bytes from a file at the current file position.

f_write() Writes data into a file at the current file position.

f_getc() Reads a character from the current position in an open file.

f_putc() Writes a character to an open file at the current file position.

f_eof() Checks whether the current position in an open file is the end of file (EOF).

f_seteof() Moves the end of file (EOF) to the current file pointer.

f_tell() Obtains the current read/write position in an open file.

f_seek() Moves the stream position in a file.

f_rewind() Sets the file position in an open file to the start of the file.

f_truncate() Opens a file for writing and truncates it to the specified length.

f_ftruncate() Truncates a file that is open for writing to a specified length.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 90/187 www.hcc-embedded.com

f_open

Use this function to open a file. The following opening modes are allowed:

Mode Description

"r" Open existing file for reading. The stream is positioned at the beginning of the file.

"r+" Open existing file for reading and writing. The stream is positioned at the beginning of the file.

"w" Truncate file to zero length or create file for writing. The stream is positioned at the beginning of
the file.

"w+" Open a file for reading and writing. The file is created if it does not exist; otherwise it is
truncated. The stream is positioned at the beginning of the file.

"a" Open for appending (writing to end of file). The file is created if it does not exist. The stream is
positioned at the end of the file.

"a+" Open for reading and appending (writing to end of file). The file is created if it does not exist. The
stream is positioned at the end of the file.

Note the following:

The same file can be opened multiple times in “r” mode.
A file can only be opened once at a time in a mode which gives write access (that is, in “r+, “w”,
“w+” , “a” or “a+” mode).
The same file can be opened multiple times in “r” mode and at the same time once in one of the
“r+, “a” or “a+” modes which give write access.
If a file is opened in “w” or “w+” mode, a lock mechanism prevents it being opened in any other
mode. This prevents opening of the file for reading and writing at the same time.

Note: There is no text mode. The system assumes that all files are in binary mode only.

Format

F_FILE * f_open (
 const char * filename,
 const char * mode)

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 91/187 www.hcc-embedded.com

Arguments

Argument Description Type

filename The file to open. char *

mode The opening mode (see above). char *

Return values

Return value Description

F_FILE * A pointer to the handle of the opened file.

NULL If the pointer is null, the file could not be opened.

Example

void myfunc(void)
{
 F_FILE *file;
 char c;

 file = f_open("myfile.bin", "r");
 if (!file)
 {
 printf("File cannot be opened!");
 return;
 }

 f_read(&c, 1, 1, file); /* Read one byte */
 printf("'%' is read from file", c);
 f_close(file);
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 92/187 www.hcc-embedded.com

f_open_enc

Use this function to open an encrypted file. When a file is opened this way:

all writes to the file are AES encrypted, using the cipher data provided when it was opened, before
being committed to the media.
all reads from the file are AES decrypted, using the cipher data provided when it was opened, before
being passed to the user.

The following opening modes are allowed:

Mode Description

"r" Open existing file for reading. The stream is positioned at the beginning of the file.

"a" Open for appending (writing to end of file). The file is created if it does not exist. The stream is
positioned at the end of the file.

"a+" Open for reading and appending (writing to end of file). The file is created if it does not exist. The
stream is positioned at the end of the file.

Note the following:

The same file can be opened multiple times in “r” mode.
A file can only be opened once at a time in a mode that gives write access (that is, in “a” or “a+”
mode).
The same file can be opened multiple times in “r” mode and at the same time once in either “a” or
“a+” mode.

Note: There is no text mode. The system assumes that all files are in binary mode only.

Format

FN_FILE * f_open_enc (
 const char * p_filename,
 const char * p_mode,
 const uint8_t * p_key,
 const uint8_t * p_init_vect)

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 93/187 www.hcc-embedded.com

Arguments

Argument Description Type

p_filename A pointer to the file to open. char *

p_mode A pointer to the opening mode: r, a, or a+ (see above). char *

p_key A pointer to an array of FAT_ENC_BLOCK_SIZE bytes holding the encryption key. uint8_t *

p_init_vect A pointer to an array of FAT_ENC_BLOCK_SIZE bytes holding the initialization
vector.

uint8_t *

Return values

Return value Description

FN_FILE * A pointer to the handle of the opened file.

NULL If the pointer is null, the file could not be opened.

Example

/* Encryption key - should be secret to whoever has access to this media */
uint8_t my_key[] = { 0x32, 0xaa, 0xf3, 0x82, 0x5b, 0x80, 0x07, 0x6a, 0x8e, 0xdb,
0x9b, 0xd6, 0x36, 0x9c, 0x47, 0xfb };

/* Initialization vector - should be unique for each file but does not need to be
secret */

uint8_t test1_iv[] = { 0x71, 0x34, 0x1f, 0xd0, 0x19, 0x3b, 0xe8, 0x51, 0x4c, 0x38,
0x9c, 0x13, 0x77, 0x8c, 0x95, 0x50 };

void myfunc(void)
{
 F_FILE *file;
 char c;
 file = f_open_enc("test1.bin", /* File name */
 "r", /* Open mode: only r, a, a+ supported */
 &my_key[0], /* Encryption key */
 &test1_iv[0]); /* Initialization vector for this file */
 if (!file)
 {
 printf("File cannot be opened!");
 return;
 }

 f_read(&c, 1, 1, file); /* Read one byte */
 printf("'%' is read from file", c);
 f_close(file);
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 94/187 www.hcc-embedded.com

f_open_nonsafe

Use this function to open a file.

The following opening modes are allowed:

Mode Description

"r" Open existing file for reading. The stream is positioned at the beginning of the file.

"r+" Open existing file for reading and writing. The stream is positioned at the beginning of the file.

"w" Truncate file to zero length or create file for writing. The stream is positioned at the beginning of
the file.

"w+" Open a file for reading and writing. The file is created if it does not exist; otherwise it is
truncated. The stream is positioned at the beginning of the file.

"a" Open for appending (writing to end of file). The file is created if it does not exist. The stream is
positioned at the end of the file.

"a+" Open for reading and appending (writing to end of file). The file is created if it does not exist. The
stream is positioned at the end of the file.

Note the following:

The same file can be opened multiple times in “r” mode.
A file can only be opened once at a time in a mode which gives write access (that is, in “r+, “w”,
“w+” , “a” or “a+” mode).
The same file can be opened multiple times in “r” mode and at the same time once in one of the
“r+, “a” or “a+” modes which give write access.
If a file is opened in “w” or “w+” mode, a lock mechanism prevents it being opened in any other
mode. This prevents opening of the file for reading and writing at the same time.

Note: There is no text mode. The system assumes that all files are in binary mode only.

Format

F_FILE * f_open_nonsafe (
 const char * filename,
 const char * mode)

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 95/187 www.hcc-embedded.com

Arguments

Argument Description Type

filename The file to open. char *

mode The opening mode (see above). char *

Return values

Return value Description

F_FILE * A pointer to the handle of the opened file.

NULL If the pointer is null, the file could not be opened.

Example

void myfunc(void)
{
 F_FILE *file;
 char c;

 file = f_open_nonsafe("myfile.bin", "r");
 if (!file)
 {
 printf("File cannot be opened!");
 return;
 }

 f_read(&c, 1, 1, file); /* Read one byte */
 printf("'%' is read from file", c);
 f_close(file);
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 96/187 www.hcc-embedded.com

f_close

Use this function to close a previously opened file.

Format

int f_close (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The handle of the file. F_FILE *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myfunc(void)
{
 F_FILE *file;
 char *string = "ABC";

 file = f_open("myfile.bin", "w");

 if (!file)
 {
 printf("File cannot be opened!");
 return;
 }

 f_write(string, 3, 1, file); /* Write 3 bytes */
 if (!f_close(file))
 {
 printf("File stored");
 }
 else
 {
 printf("File close error!");
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 97/187 www.hcc-embedded.com

f_abortclose

Use this function to close a previously opened file, aborting all operations.

This restores a file's last valid state (flushed or closed state).

Format

int fn_abortclose (
 F_MULTI * fm,
 FN_FILE * filehandle)

Arguments

Argument Description Type

fm A multi-structure pointer. F_MULTI *

filehandle The handle of the file. FN_FILE *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 98/187 www.hcc-embedded.com

Example

#if SAFEFAT
int fn_abortclose (F_MULTI * fm, FN_FILE * filehandle)
{
 FN_FILEINT * f = _f_check_handle(filehandle);
 int rc = F_NO_ERROR;
 F_VOLUME * vi;
 if (!f)
 {
 return fn_setlasterror(fm, F_ERR_NOTOPEN);
 }
 rc = _f_getvolume(fm, f->drivenum, &vi);
 if (!rc)
 {
 /* Restore file's clusters */
 rc = _s_restoreclusters(vi, f->s_name);
 if (rc)
 {
 /* Remove cf file, rc is already signal error */
 cf_remove(vi, f->s_name);
 }
 else
 {
 /* Remove cf file*/
 rc = cf_remove(vi, f->s_name);
 }
 }
 #ifdef USE_MALLOC
 if (f->WrDataCache.pos)
 {
 psp_free(f->WrDataCache.pos);
 f->WrDataCache.pos = NULL;
 }
 #endif
 /* Remove sync afile connections */
 _f_removesyncafile(f, rc);

 /* Release file */
 f->mode = FN_FILE_CLOSE;

 return fn_setlasterror(fm, rc);
} /* fn_abortclose */

#endif /* if SAFEFAT */

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 99/187 www.hcc-embedded.com

f_flush

Use this function to flush an opened file to a storage medium. This is logically equivalent to performing a
close and open on a file to ensure the data changed before the flush is committed to the medium.

Format

int f_flush (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The handle of the file. F_FILE *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myfunc(void)
{
 F_FILE *file;
 char *string = "ABC";

 file = f_open("myfile.bin", "w");
 if (!file)
 {
 printf("File cannot be opened!");
 return;
 }
 f_write(string, 3, 1, file); /* Write 3 bytes */

 f_flush(file); /* Commit data written */
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 100/187 www.hcc-embedded.com

f_read

Use this function to read bytes from the current position in the specified file.

The file must be opened in “r”, "r+", "w+", or "a+" mode. (See f_open() for details of modes).

Format

long f_read (
 void * buf,
 long size,
 long size_st,
 F_FILE * filehandle)

Arguments

Argument Description Type

buf The buffer to store data in. void *

size The size of the items to read. long

size_st The number of items to read. long

filehandle The handle of the file. F_FILE *

Return values

Return value Description

The number of items successfully
read.

If this does not equal the number of items requested, call
f_getlasterror() to determine the cause.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 101/187 www.hcc-embedded.com

Example

int myreadfunc(char *filename, char *buffer, long buffsize)
{
 F_FILE *file = f_open(filename, "r");
 long size = f_filelength(filename);

 if (!file)
 {
 printf("%s cannot be opened!", filename);
 return 1;
 }

 if (f_read(buffer, 1, size, file)!= size)
 {
 printf("Some items not read! Error:%d", f_getlasterror());
 }
 f_close(file);
 return 0;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 102/187 www.hcc-embedded.com

f_write

Use this function to write data into a file at the current position.

The file must be opened in "r+", “w”, “w+”, "a+", or “a” mode (see f_open() for details of modes). The file
pointer is moved forward by the number of bytes successfully written.

Note: Data is NOT permanently stored to the media until either an f_flush() or f_close() has been
executed on the file.

Format

long f_write (
 const void * buf,
 long size,
 long size_st,
 F_FILE * filehandle)

Arguments

Argument Description Type

buf A pointer to the data to write. void *

size The size of the items to write. long

size_st The number of items to write. long

filehandle The handle of the file. F_FILE *

Return values

Return value Description

The number of items successfully
written.

If this does not equal the number of items requested, call
f_getlasterror() to determine the cause.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 103/187 www.hcc-embedded.com

Example

void myfunc(void)
{
 F_FILE *file;
 char *string = "ABC";

 file = f_open("myfile.bin", "w");
 if (!file)
 {
 printf("File cannot be opened!");
 return;
 }

 /* Write 3 bytes */
 if (f_write(string, 1, 3, file) != 3)
 {
 printf("Some items not written! Error:%d", f_getlasterror());
 }
 f_close(file);
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 104/187 www.hcc-embedded.com

f_getc

Use this function to read a character from the current position in the specified open file.

Format

int f_getc (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The handle of the open file. F_FILE *

Return values

Return value Description

-1 Read failed.

value The character read from the file.

Example

int myreadfunc(char *filename, char *buffer, long buffsize)
{
 F_FILE *file = f_open(filename, "r");
 while (buffsize--)
 {
 int ch;
 if ((ch = f_getc(file)) == -1)
 break;
 *buffer++ = ch;
 buffsize--;
 }

 f_close(file);
 return 0;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 105/187 www.hcc-embedded.com

f_putc

Use this function to write a character to the specified open file at the current file position. The current file
position is incremented.

Format

int f_putc (
 char ch,
 F_FILE * filehandle)

Arguments

Argument Description Type

ch The character to write. char

filehandle The handle of the open file. F_FILE *

Return values

Return value Description

-1 Write failed.

value The successfully written character.

Example

void myfunc (char *filename, long num)
{
 F_FILE *file = f_open(filename, "w");
 while (num--)
 {
 int ch = 'A';
 if (ch != (f_putc(ch))
 {
 printf("f_putc error!");
 break;
 }
 }
 f_close(file);
 return 0;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 106/187 www.hcc-embedded.com

f_eof

Use this function to check whether the current position in the specified open file is the end of file (EOF).

Format

int f_eof (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The handle of the open file. F_FILE *

Return values

Return value Description

F_NO_ERROR Not at the end of the file.

Else End of file or an error. See Error Codes.

Example

int myreadfunc(char *filename, char *buffer, long buffsize)
{
 F_FILE *file = f_open(filename, "r");

 while (!f_eof())
 {
 if (!buffsize) break;
 buffsize--;
 f_read(buffer++, 1, 1, file);
 }
 f_close(file);

 return 0;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 107/187 www.hcc-embedded.com

f_seteof

Use this function to move the end of file (EOF) to the current file pointer.

All data after the new EOF position are lost.

Format

int f_seteof (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The handle of the open file. F_FILE *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

int mytruncatefunc(char *filename, int position)
{
 F_FILE *file = f_open(filename, "r+");

 f_seek(file, position, SEEK_SET);

 if (f_seteof(file))
 printf("Truncate failed!\n");

 f_close(file);
 return 0;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 108/187 www.hcc-embedded.com

f_tell

Use this function to get the current read/write position in the specified open file.

Format

long f_tell (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The handle of the open file. F_FILE *

Return values

Return value Description

filepos The current read or write file position.

Example

int myreadfunc(char *filename, char *buffer, long buffsize)
{
 F_FILE *file = f_open(filename, "r");
 printf("Current position %d", f_tell(file)); /* Position 0 */
 f_read(buffer, 1, 1, file); /* Read one byte */
 printf("Current position %d", f_tell(file)); /* Position 1 */
 f_read(buffer, 1, 1, file); /* Read one byte */
 printf("Current position %d", f_tell(file)); /* Position 2 */

 f_close(file);
 return 0;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 109/187 www.hcc-embedded.com

f_seek

Use this function to move the stream position in the specified open file.

An optional additional non-standard flag is provided: F_SEEK_NOWRITE. This can be set if you want to seek
past the end of file and do not want to fill the file with zeroes. This is useful for creating large files quickly,
without the normal overhead of having to write to every sector.

Note: If F_SEEK_NOWRITE is used the contents of the extended area are undefined.

The offset position is relative to whence.

Format

long f_seek (
 F_FILE * filehandle,
 long offset,
 long whence)

Arguments

Argument Description Type

filehandle The handle of the open file. F_FILE *

offset The byte position relative to whence. long

whence Where to calculate the offset from, one of the following:
• F_SEEK_CUR – current position of the file pointer.
• F_SEEK_END – end of file.
• F_SEEK_SET – start of file.

long

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 110/187 www.hcc-embedded.com

Example

int myreadfunc(char *filename, char *buffer, long buffsize)
{
 F_FILE *file = f_open(filename, "r");

 f_read(buffer, 1, 1, file); /* Read the first byte */
 f_seek(file, 0, SEEK_SET);
 f_read(buffer, 1, 1, file); /* Read the same byte */
 f_seek(file, -1, SEEK_END);
 f_read(buffer, 1, 1, file); /* Read the last byte */
 f_close(file);
 return 0;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 111/187 www.hcc-embedded.com

f_rewind

Use this function to set the file position in the specified open file to the start of the file.

Format

int f_rewind (F_FILE * filehandle)

Arguments

Argument Description Type

filehandle The handle of the open file. F_FILE *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myfunc(void)
{
 char buffer[4];
 char buffer2[4];

 F_FILE *file = f_open("myfile.bin", "r");

 if (file)
 {
 f_read(buffer, 4, 1, file);

 /* Rewind file pointer */
 f_rewind(file);

 /* Read from the beginning */
 f_read(buffer2, 4, 1, file);

 f_close(file);
 }
 return 0;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 112/187 www.hcc-embedded.com

f_truncate

Use this function to open a file for writing and truncate it to the specified length.

If the length is greater than the length of the existing file, the file is padded with zeroes to the truncated
length.

Format

F_FILE * f_truncate (
 const char * filename,
 unsigned long length)

Arguments

Argument Description Type

filename The file to open. char *

length The new length of the file. unsigned long

Return values

Return value Description

F_FILE * A pointer to the handle of the opened file.

NULL If the pointer is null, the file could not be opened.

Example

int mytruncatefunc(char *filename, unsigned long length)
{
 F_FILE *file = f_truncate(filename, length);

 if (!file)
 {
 printf("File opening error!");
 }
 else
 {
 printf("File %s truncated to %d bytes", filename, length);
 f_close(file);
 }
 return 0;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 113/187 www.hcc-embedded.com

f_ftruncate

Use this function to truncate a file which is open for writing to a specified length.

If length is greater than the length of the existing file, the file is padded with zeroes to the new length.

Format

int f_ftruncate (
 F_FILE * filehandle,
 unsigned long length)

Arguments

Argument Description Type

filehandle The file handle of the open file. F_FILE *

length The new length of the file. unsigned long

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

int mytruncatefunc(F_FILE *file, unsigned long length)
{
 int ret = f_ftruncate(filename, length);

 if (ret)
 {
 printf("Error:%d\n", ret);
 }
 else
 {
 printf("File is truncated to %d bytes", length);
 }

 return ret;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 114/187 www.hcc-embedded.com

File Management

The functions are the following:

Function Description

f_delete() Deletes a file.

f_deletecontent() Deletes a file and also its contents. That is, all the content is set to 0xFF.

f_findfirst() Finds the first file or subdirectory in a specified directory.

f_findnext() Finds the next file or subdirectory in a specified directory after a previous call to
f_findfirst() or f_findnext().

f_move() Moves a file or directory.The original file or directory is lost.

f_rename() Renames a file or directory.

f_getattr() Gets the attributes of a file.

f_setattr() Sets the attributes of a file.

f_gettimedate() Gets time and date information from a file or directory.

f_settimedate() Sets time and date information for a file or directory.

f_fstat() Gets information about a file by using the file handle.

f_stat() Gets information about a file or directory.

f_filelength() Gets the length of a file.

f_dir_walk() Finds all files and sub-directories.

f_disk_usage() Gets disk usage information for a file or directory.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 115/187 www.hcc-embedded.com

f_delete

Use this function to delete a file.

Note: A read-only or open file cannot be deleted.

Format

int f_delete (const char * filename)

Arguments

Argument Description Type

filename A null-terminated string with the name of the file to delete, with or without its path. char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myfunc(void)
{
 .
 .
 f_delete("oldfile.txt");
 f_delete("A:/subdir/oldfile.txt");
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 116/187 www.hcc-embedded.com

f_deletecontent

Use this function to delete a file and also delete its contents. This sets all the content to 0xFF.

This function is only available if F_DELETE_CONTENT is defined in config_fat.h.

Note: A read-only or open file cannot be deleted.

Format

int f_deletecontent (const char * filename)

Arguments

Argument Description Type

filename The name of the file to delete, with or without its path. char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myfunc(void)
{
 .
 .
 f_deletecontent("oldfile.txt");
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 117/187 www.hcc-embedded.com

f_findfirst

Use this function to find the first file or subdirectory in a specified directory.

First call f_findfirst() and then, if the file is found, get the next file with f_findnext(). Files with the
system attribute set are ignored.

Note: If this is called with "*.*" and it is not the root directory, then:

the first entry found is ".", the current directory.
the second entry found is “..”, the parent directory.

Format

int f_findfirst (
 const char * filename,
 F_FIND * find)

Arguments

Argument Description Type

filename The name of the file or subdirectory to find. char *

find Where to store the file information. F_FIND *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 118/187 www.hcc-embedded.com

Example

void mydir(void)
{
 F_FIND find;
 if (!f_findfirst ("A:/subdir/file*.*", &find))
 {
 do
 {
 printf("filename:%s", find.filename);
 if (find.attr&F_ATTR_DIR)
 {
 printf(" directory\n");
 }
 else
 {
 printf(" size %d\n", find.filesize);
 }
 } while (!f_findnext(&find));
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 119/187 www.hcc-embedded.com

f_findnext

Use this function to find the next file or subdirectory in a specified directory after a previous call to
f_findfirst() or f_findnext().

First call f_findfirst() and then, if a file is found, get the rest of the matching files by repeated calls to
f_findnext(). Files with the system attribute set are ignored.

Note: If this is called with "*.*" and it is not the root directory, then:

the first file found is ".", the current directory.
the second file found is “..”, the parent directory.

Format

int f_findnext (F_FIND * find)

Arguments

Argument Description Type

find File information, created by calling f_findfirst(). F_FIND *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 120/187 www.hcc-embedded.com

Example

void mydir(void)
{
 F_FIND find;
 if (!f_findfirst("A:/subdir/file*.*", &find))
 {
 do
 {
 printf("filename:%s", find.filename);
 if (find.attr&F_ATTR_DIR)
 {
 printf(" directory\n");
 }
 else
 {
 printf(" size %d\n", find.filesize);
 }
 } while (!f_findnext(&find));
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 121/187 www.hcc-embedded.com

f_move

Use this function to move a file or directory. The original file or directory is lost.

The source and target must be in the same volume. A file can be moved only if it is not open. A directory
can be moved only if there are no open files in it.

A file or directory can be moved, irrespective of its attribute settings. The attribute settings are moved
with it.

Format

int f_move (
 const char * filename,
 const char * newname)

Arguments

Argument Description Type

filename The file or directory name, with or without its path. char *

newname The new name of the file or directory, with or without the path. char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myfunc(void)
{
 .
 .
 f_move("oldfile.txt", "newfile.txt");
 f_move("A:/subdir/oldfile.txt", "A:/newdir/oldfile.txt");
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 122/187 www.hcc-embedded.com

f_rename

Use this function to rename a file or directory.

Note: The file or directory must not be read-only. If it is a file, it must not be open.

Format

int f_rename (
 const char * filename,
 const char * newname)

Arguments

Argument Description Type

filename The file or directory name, with or without its path. char *

newname The new name of the file or directory. char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myfunc(void)
{
 .
 .
 f_rename("oldfile.txt", "newfile.txt");
 f_rename("A:/subdir/oldfile.txt", "newfile.txt");
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 123/187 www.hcc-embedded.com

f_getattr

Use this function to get the attributes of a specified file.

Possible file attribute settings (F_ATTR_XXX) are defined by the FAT file system.

Format

int f_getattr (
 const char * filename,
 unsigned char * attr)

Arguments

Argument Description Type

filename The name of the file. char *

attr Where to write the attributes. unsigned char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 124/187 www.hcc-embedded.com

Example

void myfunc(void)
{
 unsigned char attr;

 /* Find whether myfile.txt is read-only */
 if (!f_getattr("myfile.txt", &attr)
 {
 if (attr & F_ATTR_READONLY)
 {
 printf("myfile.txt is read-only");
 }
 else
 {
 printf("myfile.txt is writable");
 }
 }
 else
 {
 printf("File not found!");
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 125/187 www.hcc-embedded.com

f_setattr

Use this function to set the attributes of a file.

Possible file attribute settings (F_ATTR_XXX) are defined by the FAT file system.

Note: The directory and volume attributes cannot be set by using this function.

Format

int f_setattr (
 const char * filename,
 unsigned char attr)

Arguments

Argument Description Type

filename The name of the file. char *

attr The new attribute setting. unsigned char

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myfunc(void)
{

 /* Make myfile.txt read-only and hidden */

 f_setattr("myfile.txt", F_ATTR_READONLY | F_ATTR_HIDDEN);
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 126/187 www.hcc-embedded.com

f_gettimedate

Use this function to get time and date information from a file or directory.

This field is automatically set by the system when a file or directory is created, and when a file is closed.

Date and Time Formats

The date and time fields are two 16 bit fields associated with each file/directory.

The required format for the date for PC compatibility is a short integer ‘d’ (16 bit), such that:

Argument Valid values Format

Day 0-31 (d & 0x001F)

Month 1-12 ((d & 0x01E0) >> 5)

Years since 1980 0-119 ((d & 0xFE00) >> 9)

The required format for the time for PC compatibility is a short integer ‘t’ (16 bit), such that:

Argument Valid values Format

Two second increments 0-30 (t & 0x001F)

Minute 0-59 ((t & 0x07E0) >> 5)

Hour 0-23 ((t & 0xF800) >> 11)

Format

int f_gettimedate (
 const char * filename,
 unsigned short * pctime,
 unsigned short * pcdate)

Arguments

Argument Description Type

filename The name of the file or directory. char *

pctime Where to store the creation time. unsigned short *

pcdate Where to store the creation date. unsigned short *

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 127/187 www.hcc-embedded.com

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myfunc(void)
{
unsigned short t, d, sec, min, hour;
unsigned short day, month, year;

 if (!f_gettimedate("subfolder", &t, &d))
 {
 sec = (t & F_CTIME_SEC_MASK);
 min = ((t & F_CTIME_MIN_MASK) >> F_CTIME_MIN_SHIFT);
 hour = ((t & F_CTIME_HOUR_MASK) >> F_CTIME_HOUR_SHIFT);
 day = (d & F_CDATE_DAY_MASK);
 month = ((d & F_CDATE_MONTH_MASK) >> F_CDATE_MONTH_SHIFT);
 year = 1980 + ((d & F_CDATE_YEAR_MASK) >> F_CDATE_YEAR_SHIFT);

 printf("Time: %d:%d:%d", hour, min, sec);
 printf("Date: %d.%d.%d", year, month, day);
 }
 else
 {
 printf("File time/date cannot be retrieved!");
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 128/187 www.hcc-embedded.com

f_settimedate

Use this function to set the time and date on a file or on a directory.

Date and Time Formats

The date and time fields are two 16 bit fields associated with each file/directory.

The required format for the date for PC compatibility is a short integer ‘d’ (16 bit), such that:

Argument Valid values Format

Day 0-31 (d & 0x001F)

Month 1-12 ((d & 0x01E0) >> 5)

Years since 1980 0-119 ((d & 0xFE00) >> 9)

The required format for the time for PC compatibility is a short integer ‘t’ (16 bit), such that:

Argument Valid values Format

Two second increments 0-30 (t & 0x001F)

Minute 0-59 ((t & 0x07E0) >> 5)

Hour 0-23 ((t & 0xF800) >> 11)

Format

int f_settimedate (
 const char * filename,
 unsigned short ctime,
 unsigned short cdate)

Arguments

Argument Description Type

filename The name of the file or directory. char *

ctime The creation time of the file or directory. unsigned short

cdate The creation date of the file or directory. unsigned short

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 129/187 www.hcc-embedded.com

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myfunc(void)
{
 unsigned short ctime, cdate;

 ctime = (15 << 11) + (30 << 5) + (22 >> 1); /* 15:30:22 */

 cdate = ((2002 - 1980) << 9) + (11 << 5) + (3); /* 2002.11.03. */

 f_mkdir("subfolder"); /* Create directory */
 f_settimedate("subfolder", ctime, cdate);
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 130/187 www.hcc-embedded.com

f_stat

Use this function to get information about a file or directory.

This function retrieves information by filling the F_STAT structure passed to it. It sets the file/directory size,
creation time/date, last access date, modified time/date, and the drive number where the file or directory
is located.

Note: For files, this function can also return the current size of the opened file when the configuration
option F_FINDOPENFILESIZE is set to 1, allowing it to search through all open file descriptors for its
modified size. If this feature is disabled then file size is always 0 for opened files.

Format

int f_stat (
 const char * filename,
 F_STAT * stat)

Arguments

Argument Description Type

filename The name of the file or directory. char *

stat A pointer to the F_STAT structure to be filled. F_STAT *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myfunc(void)
{
 F_STAT stat;
 if (f_stat("myfile.txt", &stat))
 {
 printf("Error!");
 return;
 }
 printf("filesize:%d", stat.filesize);
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 131/187 www.hcc-embedded.com

f_fstat

Use this function to get information about a file by using its file handle.

This function retrieves information by filling the F_STAT structure passed to it. It sets the file size, creation
time/date, last access date, modified time/date, and the drive number where the file is located.

Format

int f_fstat (
 F_FILE * p_filehandle,
 F_STAT * p_stat)

Arguments

Argument Description Type

p_filehandle The file handle. F_FILE *

p_stat A pointer to the F_STAT structure to be filled. F_STAT *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 132/187 www.hcc-embedded.com

Example

void myfunc (void)
{
 F_FILE *file;
 F_STAT stat;
 int ret;

 file = f_open(filename, "r");

 if (file != NULL)
 {
 ret = f_fstat(file, &stat);

 if (ret == F_NO_ERROR)
 {
 printf("filesize:%d\r\n", stat.filesize);
 }
 else
 {
 printf("f_fstat error: %d.\r\n", ret);
 }
 f_close(file);
 }
 else
 {
 printf("%s Cannot be opened!\r\n", filename);
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 133/187 www.hcc-embedded.com

f_filelength

Use this function to get the length of a file.

Note: This function can also return with the opened file’s size when f_findopensize() is allowed to
search for it. If f_findopensize() always returns with zero, then this feature is disabled.

Format

long f_filelength (const char * filename)

Arguments

Argument Description Type

filename The file name, with or without the path. char *

Return values

Return value Description

filelength The length of the file.

-1 The requested file does not exist or has an error; check the last error.

Example

int myreadfunc(char *filename, char *buffer, long buffsize)
{
 F_FILE *file = f_open(filename, "r");
 long size = f_filelength(filename);

 if (!file)
 {
 printf("%s Cannot be opened!", filename);
 return 1;
 }
 if (size > buffsize)
 {
 printf("Not enough memory!");
 return 2;
 }

 f_read(buffer, size, 1, file);
 f_close(file);

 return 0;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 134/187 www.hcc-embedded.com

f_dir_walk

Use this function to find all files and sub-directories.

Note: This is only available if configuration option F_DIR_WALK_SUPPORT is set.

Format

int f_dir_walk (
 const char * filename,
 F_FIND * p_find,
 t_dir_walk_cb_fn * p_callback,
 void * p_user_data)

Arguments

Argument Description Type

filename The filename or search mask. Examples include "*.*", "foo.bin",
"a:\\foo*.txt", or "*".

char *

p_find A pointer to the structure used by f_findfirst()/f_findnext(). F_FIND *

p_callback A pointer to the callback function which is called for every directory and
file.

t_dir_walk_cb_fn *

p_user_data A pointer to the returned list of files and sub-directories. void *

Return values

Return value Description

0 Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 135/187 www.hcc-embedded.com

Example

The output from this is similar to the Windows command prompt’s tree /f command.

/* Callback function for f_dir_walk */
int tree_dir_walk_fn (F_FIND * p_find, uint16_t depth, void * p_user_data)
{
 uint8_t idx;
 uint8_t b_is_only_dots; /* Will be TRUE if filename is "." or ".." */
 b_is_only_dots = FALSE;

 if (p_find->filename[0] == '.')
 {
 if (p_find->filename[1] == 0)
 {
 b_is_only_dots = TRUE;
 }
 else if ((p_find->filename[1] == '.') && (p_find->filename[2] == 0))
 {
 b_is_only_dots = TRUE;
 }
 }

 if (b_is_only_dots == FALSE)
 {
 for (idx = 1 ; idx < depth ; idx++)
 {
 printf(" ");
 }
 if (depth > 0)
 {
 printf(" +- ");
 }

 if (p_find->attr & F_ATTR_DIR)
 {
 printf("[%s]\r\n", p_find->filename);
 }
 else
 {
 printf("%s %u\r\n", p_find->filename, (int)p_find->filesize);
 }
 }
 return 0;
}

void print_tree (void)
{
 F_FIND find;
 f_dir_walk("*.*", &find, &tree_dir_walk_fn, NULL);
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 136/187 www.hcc-embedded.com

f_disk_usage

Use this function to get disk usage information for a file or directory. Disk usage is always a multiple of the
volume's cluster size.

Note: This is only available if configuration option F_DISK_USAGE_SUPPORT is set.

Format

int f_disk_usage (
 const char * filename,
 F_FIND * p_find,
 uint32_t * p_du_bytes_high,
 uint32_t * p_du_bytes_low)

Arguments

Argument Description Type

filename The file or directory name or a search mask.
Examples include "*.*", "foo.bin", "a:\\foo*.txt", and "*".

char *

p_find A pointer to the structure used by f_findfirst()/f_findnext(). F_FIND *

p_du_bytes_high A pointer to the number of used bytes (high 32 bits). uint32_t *

p_du_bytes_low A pointer to the number of used bytes (low 32 bits). uint32_t *

Return values

Return value Description

0 Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 137/187 www.hcc-embedded.com

Example

void disk_usage(void)
{
 int rc;
 uint64_t disk_usage_bytes64;
 uint32_t disk_usage_bytes_high;
 uint32_t disk_usage_bytes;
 F_FIND find;

 rc = f_disk_usage("*.*", &find, &disk_usage_bytes_high, &disk_usage_bytes);
 if (rc == F_NO_ERROR)
 {
 disk_usage_bytes64 = (uint64_t)disk_usage_bytes_high << 32;
 disk_usage_bytes64 |= disk_usage_bytes;
 printf("Disk usage: %llu bytes\r\n", disk_usage_bytes64);
 printf(" %llu KiB\r\n", disk_usage_bytes64 / 1024);
 }
 else
 {
 printf("Error: %i\r\n", rc);
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 138/187 www.hcc-embedded.com

7.3. File System Unicode API
This section describes all the API Unicode functions available with the file system. It is split into functions
for directory management, file access, file management, and Unicode translation.

Unicode-Specific File System Functions

To enable Unicode API calls in the file system, set the #define HCC_UNICODE definition in the
/src/config/config_fat.h file. This makes the functions in this section, as well as their standard API
equivalents, available for use.

All functions are exactly the same as their standard API counterparts, except that all character string
parameters are changed to “wide character” (wchar) strings.

Character and wide character definition with W_CHAR

W_CHAR is defined as char if Unicode is disabled and as wchar if it is enabled. Therefore W_CHAR is used
in structures where the element could be used in either type of system.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 139/187 www.hcc-embedded.com

Unicode Directory Management

The functions are the following:

Function Description

f_wmkdir() Creates a new directory with a Unicode 16 name.

f_wchdir() Changes the current working directory.

f_wrmdir() Removes a Unicode 16 directory.

f_wgetcwd() Gets the current working directory.

f_wgetdcwd() Gets the current working directory on the selected drive.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 140/187 www.hcc-embedded.com

f_wmkdir

Use this function to create a new directory with a Unicode 16 name.

Format

int f_wmkdir (const W_CHAR * dirname)

Arguments

Argument Description Type

dirname The Unicode 16 name of the directory to create. W_CHAR *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

 void myfunc(void)
{
 .
 .
 f_wmkdir("subfolder"); /* Create directories */
 f_wmkdir("subfolder/sub1");
 f_wmkdir("subfolder/sub2");
 f_wmkdir("a:/subfolder/sub3");
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 141/187 www.hcc-embedded.com

f_wchdir

Use this function to change the current working directory (that has a Unicode 16 name).

Format

int f_wchdir (const W_CHAR * dirname)

Arguments

Argument Description Type

dirname The Unicode 16 name of the directory to change to. W_CHAR *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

 void myfunc(void)
{
 .
 .
 f_wmkdir("subfolder");
 f_wchdir("subfolder"); /* Change directory */
 f_wmkdir("sub2");
 f_wchdir(".."); /* Go upward */
 f_wchdir("subfolder/sub2"); /* Go into directory sub2 */
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 142/187 www.hcc-embedded.com

f_wrmdir

Use this function to remove a directory that has a Unicode 16 name.

Note: The directory must be empty. Otherwise, an error code is returned and it is not removed.

Format

int f_wrmdir (const W_CHAR * dirname)

Arguments

Argument Description Type

dirname The Unicode 16 name of the directory to remove. W_CHAR *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

 void myfunc(void)
{
 .
 .
 f_wmkdir("subfolder"); /* Create directories */
 f_wmkdir("subfolder/sub1");
 .
 . /* Do some work */
 .
 f_wrmdir("subfolder/sub1"); /* Remove directories */
 f_wrmdir("subfolder");
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 143/187 www.hcc-embedded.com

f_wgetcwd

Use this function to get the current working directory on the current drive.

Format

int f_wgetcwd (
 W_CHAR * buffer,
 int maxlen)

Arguments

Argument Description Type

buffer Where to store the current working directory string. W_CHAR *

maxlen The length of the buffer. int

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

 void myfunc(int drivenum)
{
 W_CHAR buffer[F_MAXPATH];
 if (!f_wgetcwd(drivenum, buffer, F_MAXPATH))
 {
 wprintf("Current directory is %s", buffer);
 wprintf("on drive %c", drivenum + 'A');
 }
 else
 {
 wprintf("Drive error!")
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 144/187 www.hcc-embedded.com

f_wgetdcwd

Use this function to get the current working directory on the selected drive.

Format

int f_wgetdcwd (
 int drivenum,
 W_CHAR * buffer,
 int maxlen)

Arguments

Argument Description Type

drivenum The drive number (0='A', 1='B', and so on.). int

buffer Where to store the current working directory string. W_CHAR *

maxlen The length of the buffer. int

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

 void myfunc(int drivenum)
{
 W_CHAR buffer[F_MAXPATH];
 if (!f_wgetdcwd(drivenum, buffer, F_MAXPATH))
 {
 wprintf("Current directory is %s", buffer);
 wprintf("on drive %c", drivenum + 'A');
 }
 else
 {
 wprintf("Drive error!")
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 145/187 www.hcc-embedded.com

Unicode File Access

The functions are the following:

Function Description

f_wopen() Opens a file that has a Unicode 16 filename.

f_wopen_nonsafe() Opens a Unicode 16 file without the journaling enabled.

f_wtruncate() Opens a Unicode 16 file for writing and truncates it to the specified length.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 146/187 www.hcc-embedded.com

f_wopen

Use this function to open a file with a Unicode 16 filename. The following opening modes are allowed:

Modes Description

"r" Open an existing file for reading. The stream is positioned to the beginning of the file.

"r+" Open an existing file for reading and writing. The stream is positioned to the beginning of the
file.

"w" Truncate file to zero length or create file for writing. The stream is positioned to the beginning
of the file.

"w+" Open for reading and writing. The file is created if it does not exist; otherwise it is truncated.
The stream is positioned to the beginning of the file.

"a" Open for appending (writing at end of file). The file is created if it does not exist. The stream is
positioned to the end of the file.

"a+" Open for reading and appending (writing at end of file). The file is created if it does not exist.
The stream is positioned to the end of the file.

Note the following:

The same file can be opened multiple times in “r” mode.

A file can only be opened once at a time in a mode which gives write access (that is, in “r+, “w”,
“w+” , “a” or “a+” mode).

The same file can be opened multiple times in “r” mode and at the same time once in one of the
“r+, “a” or “a+” modes which give write access.
If a file is opened in “w” or “w+” mode, a lock mechanism prevents it being opened in any other
mode. This prevents opening of the file for reading and writing at the same time.

Note: There is no text mode. The system assumes that all files are in binary mode only.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 147/187 www.hcc-embedded.com

Format

F_FILE * f_wopen (
 const W_CHAR * filename,
 const char * mode)

Arguments

Argument Description Type

filename The Unicode 16 name of the file. W_CHAR *

mode The opening mode (see above). char *

Return values

Return value Description

F_FILE * A pointer to the handle of the opened file.

NULL If the pointer is null, the file could not be opened.

Example

void myfunc(void)
{
 F_FILE *file;
 char c;

 file = f_wopen("myfile.bin", "r");

 if (!file)
 {
 wprintf("File cannot be opened!");
 return;
 }
 f_read(&c, 1, 1, file); /* Read one byte */
 wprintf("'%c' is read from file", c);
 f_close(file);
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 148/187 www.hcc-embedded.com

f_wopen_nonsafe

Use this function to open a file without the journaling enabled. This means that if the system is reset
unexpectedly the open file could be left in an uncertain state. Typically the length may not be consistent
with the amount of data written.

This function may be used to improve performance when a file with less sensitive data is being written.

The following opening modes are allowed:

Modes Description

"r" Open an existing file for reading. The stream is positioned at the beginning of the file.

"r+" Open an existing file for reading and writing. The stream is positioned at the beginning of the
file.

"w" Truncate file to zero length or create file for writing. The stream is positioned at the beginning
of the file.

"w+" Open for reading and writing. The file is created if it does not exist; otherwise it is truncated.
The stream is positioned at the beginning of the file.

"a" Open for appending (writing at end of file). The file is created if it does not exist. The stream is
positioned at the end of the file.

"a+" Open for reading and appending (writing at end of file). The file is created if it does not exist.
The stream is positioned at the end of the file.

Note the following:

The same file can be opened multiple times in “r” mode.

A file can only be opened once at a time in a mode which gives write access (that is, in “r+, “w”,
“w+” , “a” or “a+” mode).

The same file can be opened multiple times in “r” mode and at the same time once in one of the
“r+, “a” or “a+” modes which give write access.
If a file is opened in “w” or “w+” mode, a lock mechanism prevents it being opened in any other
mode. This prevents opening of the file for reading and writing at the same time.

Note: There is no text mode. The system assumes that all files are accessed in binary mode only.

Format

F_FILE * f_wopen_nonsafe (
 const wchar * filename,
 const wchar * mode)

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 149/187 www.hcc-embedded.com

Arguments

Argument Description Type

filename The Unicode 16 name of the file. wchar *

mode The opening mode (see above). wchar *

Return values

Return value Description

F_FILE * A pointer to the handle of the opened file.

NULL If the pointer is null, the file could not be opened.

Example

void myfunc(void)
{
 F_FILE *file;
 char c;

 file = f_wopen_nonsafe("myfile.bin", "r");

 if (!file)
 {
 wprintf("File cannot be opened!");
 return;
 }
 f_read(&c, 1, 1, file); /* Read one byte */
 wprintf("'%' is read from file", c);

 f_close(file);
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 150/187 www.hcc-embedded.com

f_wtruncate

Use this function to open an existing file for writing and truncate it to the specified length.

If the length is greater than the length of the existing file, the file is padded with zeroes to the truncated
length.

Format

F_FILE * f_wtruncate (
 const W_CHAR * filename,
 unsigned long length)

Arguments

Argument Description Type

filename The name of the file. W_CHAR *

length The new length of the file. unsigned long

Return values

Return value Description

F_FILE * A pointer to the handle of the opened file.

NULL If the pointer is null, the file could not be opened.

Example

int mywtruncatefunc(W_CHAR *filename, unsigned long length)
{
 F_FILE *file = f_wtruncate(filename, length);

 if (!file)
 {
 wprintf("File not found!");
 }
 else
 {
 wprintf("File %s truncated to %d bytes", filename, length);
 f_close(file);
 }
 return 0;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 151/187 www.hcc-embedded.com

Unicode File Management

The functions are the following:

Function Description

f_wdelete() Deletes a file that has a Unicode 16 name.

f_wdeletecontent() Deletes a Unicode 16 file and also its contents. This sets all the content to 0xFF.

f_wfindfirst() Finds the first Unicode 16 file or subdirectory in a specified directory.

f_wfindnext() Finds the next Unicode 16 file or subdirectory in a specified directory after a
previous call to f_wfindfirst() or f_wfindnext().

f_wmove() Moves a Unicode 16 file or directory. The original file or directory is lost.

f_wrename() Renames a Unicode 16 file or directory.

f_wgetattr() Gets the attributes of a specified Unicode 16 file.

f_wsetattr() Sets the attributes of a specified Unicode 16 file.

f_wgettimedate() Gets time and date information from a Unicode 16 file or directory.

f_wsettimedate() Sets time and date information for a Unicode 16 file or directory.

f_wstat() Gets information about a Unicode 16 file or directory.

f_wfilelength() Gets the length of a Unicode 16 file.

f_wdir_walk() Finds all files and sub-directories.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 152/187 www.hcc-embedded.com

f_wdelete

Use this function to delete a file with a Unicode 16 name.

Format

 int f_wdelete (const W_CHAR * filename)

Arguments

Argument Description Type

filename The Unicode 16 name of the file, with or without the path. W_CHAR *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

 void myfunc(void)
{
 .
 .
 f_wdelete("oldfile.txt");
 f_wdelete("A:/subdir/oldfile.txt");
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 153/187 www.hcc-embedded.com

f_wdeletecontent

Use this function to delete a file with a Unicode 16 name and also its contents. This sets all the content to
0xFF.

Note: This function is available only if F_DELETE_CONTENT is defined in config_fat.h. A read-only or
open file cannot be deleted.

Format

int f_wdeletecontent (const wchar * filename)

Arguments

Argument Description Type

filename The Unicode 16 name of the file, with or without the path. wchar *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myfunc(void)
{
 .
 .
 f_wdeletecontent("oldfile.txt");
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 154/187 www.hcc-embedded.com

f_wfindfirst

Use this function to find the first Unicode 16 file or subdirectory in the specified directory.

First call f_wfindfirst() then, if a file is found, get the next file with f_wfindnext().

Format

int f_wfindfirst (
 const W_CHAR * filename,
 F_WFIND * find)

Arguments

Argument Description Type

filename The Unicode 16 name of the file or subdirectory to find. W_CHAR *

find Where to store the file information. F_WFIND *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

 void mydir(void)
{
 F_WFIND find;
 if (!f_wfindfirst("A:/subdir/file*.*", &find))
 {
 do
 {
 wprintf("filename:%s", find.filename);
 if (find.attr&F_ATTR_DIR)
 {
 wprintf(" directory\n");
 }
 else
 {
 wprintf(" size %d\n", find.len);
 }
 } while (!f_wfindnext(&find));
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 155/187 www.hcc-embedded.com

f_wfindnext

Use this function to find the next Unicode 16 file or subdirectory in a specified directory after a previous
call to f_wfindfirst() or f_wfindnext().

First call f_wfindfirst() then, if a file is found, get the rest of the matching files by repeated calls to
f_wfindnext().

Format

int f_wfindnext (F_WFIND * find)

Arguments

Argument Description Type

find A Find structure (created by calling f_wfindfirst()). F_WFIND *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

 void mydir(void)
{
 F_WFIND find;
 if (!f_wfindfirst("A:/subdir/file*.*", &find))
 {
 do
 {
 wprintf("filename:%s", find.filename);
 if (find.attr&F_ATTR_DIR)
 {
 wprintf(" directory\n");
 }
 else
 {
 wprintf(" size %d\n", find.len);
 }
 } while (!f_wfindnext(&find));
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 156/187 www.hcc-embedded.com

f_wmove

Use this function to move a file or directory with a Unicode 16 name.

The source and target must be in the same volume. The original file or directory is lost.

Format

int f_wmove (
 const W_CHAR * filename,
 const W_CHAR * newname)

Arguments

Argument Description Type

filename The Unicode 16 file or directory name, with or without the path. W_CHAR *

newname The new Unicode 16 name of the file or directory. W_CHAR *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

 void myfunc(void)
{
 .
 .
 f_wmove("oldfile.txt", "newfile.txt");
 f_wmove("A:/subdir/oldfile.txt", "A:/newdir/oldfile.txt");
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 157/187 www.hcc-embedded.com

f_wrename

Use this function to rename a file or directory with a Unicode 16 name.

Format

int f_wrename (
 const W_CHAR * filename,
 const W_CHAR * newname)

Arguments

Argument Description Type

filename The Unicode 16 file or directory name, with or without the path. W_CHAR *

newname The new Unicode 16 name of the file or directory. W_CHAR *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

 void myfunc(void)
{
 .
 .
 f_wrename("oldfile.txt", "newfile.txt");
 f_wrename("A:/dir/oldfile.txt", "newfile.txt");
 .
 .
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 158/187 www.hcc-embedded.com

f_wgetattr

Use this function to get the attributes of a specified file with a Unicode 16 name. Possible file attribute
settings are listed in the F_ATTR_XXX table.

Format

int f_wgetattr (
 const wchar * filename,
 unsigned char * attr)

Arguments

Argument Description Type

filename The Unicode 16 name of the file. wchar *

attr Where to write the attribute value. unsigned char *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myfunc(void)
{
 unsigned char attr;
 /* Find whether myfile.txt is read-only */
 if (!f_wgetattr("myfile.txt", &attr)
 {
 if (attr & F_ATTR_READONLY)
 {
 wprintf("myfile.txt is read-only");
 }
 else
 {
 wprintf("myfile.txt is writable");
 }
 }
 else
 {
 wprintf("File not found!");
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 159/187 www.hcc-embedded.com

f_wsetattr

Use this function to set the attributes of a file with a Unicode 16 name.

Possible file attribute settings are listed in the F_ATTR_XXX table.

Note: The directory and volume attributes cannot be set by this function.

Format

int f_wsetattr (
 const wchar * filename,
 unsigned char attr)

Arguments

Argument Description Type

filename The Unicode 16 name of the file. wchar *

attr The new attribute setting for that file. unsigned char

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myfunc (void)
{
 /* Make myfile.txt read-only and hidden */
 f_wsetattr("myfile.txt", F_ATTR_READONLY | F_ATTR_HIDDEN);
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 160/187 www.hcc-embedded.com

f_wgettimedate

Use this function to get time and date information for a file or directory with a Unicode 16 name.

This field is automatically set by the system when a file or directory is created, and when a file is closed.

Date and Time Formats

The date and time fields are two 16 bit fields associated with each file/directory.

The required format for the date for PC compatibility is a short integer ‘d’ (16 bit), such that:

Argument Valid values Format

Day 0-31 (d & 0x001F)

Month 1-12 ((d & 0x01E0) >> 5)

Years since 1980 0-119 ((d & 0xFE00) >> 9)

The required format for the time for PC compatibility is a short integer ‘t’ (16 bit), such that:

Argument Valid values Format

Two second increments 0-30 (t & 0x001F)

Minute 0-59 ((t & 0x07E0) >> 5)

Hour 0-23 ((t & 0xF800) >> 11)

Format

int f_wgettimedate (
 const W_CHAR * filename,
 unsigned short * pctime,
 unsigned short * pcdate)

Arguments

Argument Description Type

filename The Unicode 16 name of the file or directory. W_CHAR *

pctime Where to store the time. unsigned short *

pcdate Where to store the date. unsigned short *

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 161/187 www.hcc-embedded.com

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

 void myfunc(void)
{
 unsigned short t,d;
 if (!f_wgettimedate("subfolder",&t,&d))
 {
 unsigned short sec = (t & 0x001F) << 1;
 unsigned short minute = ((t & 0x07E0) >> 5);
 unsigned short hour = ((t & 0x0F800) >> 11);
 unsigned short day = (d & 0x001F);
 unsigned short month = ((d & 0x01F0) >> 5);
 unsigned short year = 1980 + ((d & 0xFE00) >> 9);

 wprintf("Time: %d:%d:%d", hour, minute, sec);
 wprintf("Date: %d.%d.%d", year, month, day);
 }
 else
 {
 wprintf("File time cannot be retrieved!");
 }
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 162/187 www.hcc-embedded.com

f_wsettimedate

Use this function to set the time and date on a file or on a directory with a Unicode 16 name.

Date and Time Formats

The date and time fields are two 16 bit fields associated with each file/directory.

The required format for the date for PC compatibility is a short integer ‘d’ (16 bit), such that:

Argument Valid values Format

Day 0-31 (d & 0x001F)

Month 1-12 ((d & 0x01E0) >> 5)

Years since 1980 0-119 ((d & 0xFE00) >> 9)

The required format for the time for PC compatibility is a short integer ‘t’ (16 bit), such that:

Argument Valid values Format

Two second increments 0-30 (t & 0x001F)

Minute 0-59 ((t & 0x07E0) >> 5)

Hour 0-23 ((t & 0xF800) >> 11)

Format

int f_settimedate (
 const W_CHAR * filename,
 unsigned short ctime,
 unsigned short cdate)

Arguments

Argument Description Type

filename The Unicode 16 name of the file. W_CHAR *

ctime The creation time of the file or directory. unsigned short

cdate The creation date of the file or directory. unsigned short

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 163/187 www.hcc-embedded.com

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

 void myfunc(void)
{
 unsigned short ctime, cdate;

 ctime = (15 << 11) + (30 << 5) + (23 >> 1); /* 15:30:22 */

 cdate = ((2002 - 1980) << 9) + (11 << 5) + (3); /* 2002.11.03. */

 f_wmkdir("subfolder"); /* Create directory */
 f_wsettimedate("subfolder", ctime, cdate);
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 164/187 www.hcc-embedded.com

f_wstat

Use this function to get information about a Unicode 16 file or directory.

The function retrieves information by filling the F_STAT structure passed to it. It sets the file/directory size,
creation time/date, last access date, modified time/date, and the drive number where the file or directory
is located.

Note: For files, this function can also return the current size of the opened file when the configuration
option F_FINDOPENFILESIZE is set to 1, allowing it to search through all open file descriptors for its
modified size. If this feature is disabled then file size is always 0 for opened files.

Format

int f_wstat (
 const wchar * filename,
 F_STAT * stat)

Arguments

Argument Description Type

filename The Unicode 16 file or directory name. wchar *

stat A pointer to the F_STAT structure to be filled. F_STAT *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else See Error Codes.

Example

void myfunc(void)
{
 F_STAT stat;
 if (f_wstat("myfile.txt", &stat))
 {
 wprintf("Error!");
 return;
 }
 wprintf("filesize:%d", stat.filesize);
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 165/187 www.hcc-embedded.com

f_wfilelength

Use this function to obtain the length of a file with a Unicode 16 name.

Format

long f_wfilelength (W_CHAR * filename)

Arguments

Argument Description Type

filename The Unicode 16 file name, with or without the path. W_CHAR *

Return values

Return value Description

filelength The length of the file.

-1 The requested file does not exist or has an error; check the last error.

Example

 int myreadfunc(W_CHAR *filename, char *buffer, long buffsize)
{
 F_FILE *file = f_wopen(filename, "r");
 long size = f_wfilelength(filename);

 if (!file)
 {
 wprintf("%s Cannot be opened!", filename);
 return 1;
 }
 if (size > buffsize)
 {
 wprintf("Not enough memory!");
 return 2;
 }

 f_read(buffer, size, 1, file);
 f_close(file);
 return 0;
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 166/187 www.hcc-embedded.com

f_wdir_walk

Use this function to find all files and sub-directories.

Note: This is only available if configuration option F_DIR_WALK_SUPPORT is set.

Format

int f_wdir_walk (
 const char * filename,
 F_WFIND * p_find,
 t_wdir_walk_cb_fn * p_callback,
 void * p_user_data)

Arguments

Argument Description Type

filename The filename or search mask. Examples include "*.*", "foo.bin",
"a:\\foo*.txt", or "*".

char *

p_find A pointer to the structure used by wfindfirst()/wfindnext(). F_WFIND *

p_callback A pointer to the callback function which is called for every directory
and file.

t_wdir_walk_cb_fn *

p_user_data A pointer to the returned list of files and sub-directories. void *

Return values

Return value Description

0 Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 167/187 www.hcc-embedded.com

Example

The output from this is similar to the Windows command prompt’s tree /f command.

/* Callback function for f_wdir_walk */

int tree_wdir_walk_fn (F_WFIND * p_find, uint16_t depth, void * p_user_data)
{
 uint8_t idx;
 uint8_t b_is_only_dots; /* Will be TRUE if filename is "." or ".." */

 b_is_only_dots = FALSE;

 if (p_find->filename[0] == '.')

 {
 if (p_find->filename[1] == 0)
 {
 b_is_only_dots = TRUE;
 }
 else if ((p_find->filename[1] == '.') && (p_find->filename[2] == 0))
 {
 b_is_only_dots = TRUE;
 }
 }

 if (b_is_only_dots == FALSE)

 {
 for (idx = 1 ; idx < depth ; idx++)
 {
 printf(" ");
 }
 if (depth > 0)
 {
 printf(" +- ");
 }

 if (p_find->attr & F_ATTR_DIR)
 {
 printf("[%ls]\r\n", p_find->filename);
 }
 else
 {
 printf("%ls %u\r\n", p_find->filename, (int)p_find->filesize);
 }
 }

 return 0;

}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 168/187 www.hcc-embedded.com

void print_treew (void)
{
 F_WFIND find;
 f_wdir_walk(L"*.*", &find, &tree_wdir_walk_fn, NULL);
}

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 169/187 www.hcc-embedded.com

Unicode Translation

To enable full Unicode support, you must provide functions to translate characters from Unicode to ASCII
and to convert characters from ASCII to Unicode.

This is performed using the two user-provided functions described below. The package contains sample
implementations of these functions for the Shift JIS Japanese character set in the
src/fat/common/fat_shjis.c file.

The functions are the following:

Function Description

f_set_ascii_to_unicode() Converts one or two single byte ASCII characters to a single UNICODE wide-
byte character.

f_set_unicode_to_ascii() Converts a single UNICODE wide-byte character to one or two single byte
ASCII characters.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 170/187 www.hcc-embedded.com

f_set_ascii_to_unicode

Use this function to convert one or two single byte ASCII characters to a single UNICODE wide-byte
character.

Format

uint32_t f_set_ascii_to_unicode(
 wchar * p_dst,
 const char * p_src,
 uint32_t * p_len_src)

Arguments

Argument Description Type

p_dst Where to place the single wide-byte character. wchar *

p_src The ASCII character(s) to convert. char *

p_len_src The available space in the location. On return this holds the number of input
characters written to * p_dst.

uint32_t *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else Conversion failed.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 171/187 www.hcc-embedded.com

f_set_unicode_to_ascii

Use this function to convert a single UNICODE wide-byte character to one or two single byte ASCII
characters.

Format

uint32_t f_set_unicode_to_ascii (
 char * p_dst,
 const wchar src,
 uint32_t * p_len_dst)

Arguments

Argument Description Type

p_dst Where to place the ASCII character(s). char *

src The single wide-byte Unicode character to convert. wchar

p_len_dst The available space in the location. On return this holds the number of
characters written to * p_dst.

uint32_t *

Return values

Return value Description

F_NO_ERROR Successful execution.

Else Conversion failed.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 172/187 www.hcc-embedded.com

7.4. Error Codes
The table below lists all the error codes that may be generated by API calls to HCC’s file systems. Please
note that some error codes are not used by every file system.

The header file to include for this list is: /src/api/api_fs_err.h

Error Value Meaning

F_NO_ERROR 0 Successful execution.

F_ERR_INVALIDDRIVE 1 The specified drive does not exist.

F_ERR_NOTFORMATTED 2 The specified volume has not been formatted.

F_ERR_INVALIDDIR 3 The specified directory is invalid.

F_ERR_INVALIDNAME 4 The specified file name is invalid.

F_ERR_NOTFOUND 5 The file or directory could not be found.

F_ERR_DUPLICATED 6 The file or directory already exists.

F_ERR_NOMOREENTRY 7 The volume is full.

F_ERR_NOTOPEN 8 The file access function requires the file to be open.

F_ERR_EOF 9 End of file.

F_ERR_RESERVED 10 Not used.

F_ERR_NOTUSEABLE 11 Invalid parameters for f_seek().

F_ERR_LOCKED 12 The file has already been opened for writing/appending.

F_ERR_ACCESSDENIED 13 The necessary physical read and/or write functions are not
present for this volume.

F_ERR_NOTEMPTY 14 The directory to be moved or deleted is not empty.

F_ERR_INITFUNC 15 No init function is available for a driver, or the function generates
an error.

F_ERR_CARDREMOVED 16 The card has been removed.

F_ERR_ONDRIVE 17 Non-recoverable error on drive.

F_ERR_INVALIDSECTOR 18 A sector has developed an error.

F_ERR_READ 19 Error reading the volume.

F_ERR_WRITE 20 Error writing file to volume.

F_ERR_INVALIDMEDIA 21 Media not recognized.

F_ERR_BUSY 22 The caller could not obtain the semaphore within the expiry time.

F_ERR_WRITEPROTECT 23 The physical medium is write protected.

F_ERR_INVFATTYPE 24 The type of FAT is not recognized.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 173/187 www.hcc-embedded.com

Error Value Meaning

F_ERR_MEDIATOOSMALL 25 Media is too small for the format type requested.

F_ERR_MEDIATOOLARGE 26 Media is too large for the format type requested.

F_ERR_NOTSUPPSECTORSIZE 27 The sector size is not supported. The only supported sector size is
512 bytes.

F_ERR_UNKNOWN 28 Unspecified error has occurred.

F_ERR_DRVALREADYMNT 29 The drive is already mounted.

F_ERR_TOOLONGNAME 30 The name is too long.

F_ERR_NOTFORREAD 31 Not for read.

F_ERR_DELFUNC 32 The delete drive driver function failed.

F_ERR_ALLOCATION 33 psp_malloc() failed to allocate the required memory.

F_ERR_INVALIDPOS 34 An invalid position is selected.

F_ERR_NOMORETASK 35 All task entries are exhausted.

F_ERR_NOTAVAILABLE 36 The called function is not supported by the target volume.

F_ERR_TASKNOTFOUND 37 The caller’s task identifier was not registered – normally because
f_enterFS() has not been called.

F_ERR_UNUSABLE 38 The file system has become unusable, normally due to excessive
error rates on the underlying media.

F_ERR_CRCERROR 39 A CRC error has been detected on the file.

F_ERR_CARDCHANGED 40 The card that was being accessed has been replaced with a
different card.

F_ERR_REPAIRNEEDED 41 f_repair() must be used to return the system to a consistent
state.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 174/187 www.hcc-embedded.com

7.5. Types and Definitions
This section describes the main elements that are defined in the API Header file.

W_CHAR: Character and Wide Character Definition

W_CHAR is defined to char if Unicode is disabled and to wchar if it is enabled. Therefore W_CHAR is used in
structures where the element could be used in either type of system.

F_FILE: File Handle

The file handle, used as a reference for accessing files.

The handle is obtained when a file is opened and released when it is closed.

F_FIND

The F_FIND structure takes this form:

Element Type Description

filename[F_MAXPATHNAME] char Long file name.

name[F_MAXSNAME] char Short file name.

ext[F_MAXSEXT] char Short file name extension.

attr unsigned char Attribute setting of the file.

ctime unsigned short Creation time.

cdate unsigned short Creation date.

filesize uint32_t Length of file.

cluster uint32_t For internal use only.

findfsname F_NAME For internal use only.

pos F_POS For internal use only.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 175/187 www.hcc-embedded.com

F_WFIND

The F_WFIND structure takes this form:

Element Type Description

filename[F_MAXPATHNAME] W_CHAR File name + extension.

name[F_MAXSNAME] char File extension.

ext[F_MAXSEXT] char File name.

attr unsigned char Attribute of the file.

ctime unsigned short Creation time.

cdate unsigned short Creation date.

filesize uint32_t Length of file.

cluster uint32_t File system internal use only.

findfsname F_NAME File system internal use only.

pos F_POS File system internal use only.

F_SPACE

The F_SPACE structure takes this form:

Element Type Description

total uint32_t The total size in bytes of the disk.

free uint32_t The number of free bytes on the disk.

used uint32_t The number of used bytes on the disk.

bad uint32_t The number of bad bytes on the disk.

total_high uint32_t The high part of total if greater than 4GB.

free_high uint32_t The high part of free if greater than 4GB.

used_high uint32_t The high part of used if greater than 4GB.

bad_high uint32_t The high part of bad if greater than 4GB.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 176/187 www.hcc-embedded.com

F_PARTITION

The F_PARTITION structure takes this form:

Element Type Description

secnum uint32_t The number of sectors in this partition.

system_indicator unsigned char Use F_SYSIND_XXX values.

bootable unsigned char If this is not 0, the bootable (active) bit of the partition will be set.

F_STAT Structure

The F_STAT structure takes this form:

Element Type Description

filesize uint32_t The size of the file.

createdate unsigned short The creation date.

createtime unsigned short The creation time.

modifieddate unsigned short The last modified date.

modifiedtime unsigned short The last modified time.

lastaccessdate unsigned short The last accessed date.

attr unsigned char 00ADVSHR

drivenum int The number of the volume.

ST_FILE_CHANGED

The ST_FILE_CHANGED structure takes this form:

Element Type Description

action unsigned char Change made to the file.

flags unsigned char Flag to indicate changed object type.

attr unsigned char File attributes.

ctime unsigned short Creation time of file.

cdate unsigned short Creation date of file.

filesize uint32_t Size of modified file.

filename[F_MAXPATHNAME] W_CHAR Name of modified file.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 177/187 www.hcc-embedded.com

Change Object Flags

These flags are used to indicate the type of property that has changed.

Definition Description

FFLAGS_NONE No object specified.

FFLAGS_FILE_NAME The file name.

FFLAGS_DIR_NAME The directory name.

FFLAGS_NAME The name.

FFLAGS_ATTRIBUTES The attributes of the object.

FFLAGS_SIZE The file size.

FFLAGS_LAST_WRITE The modification time.

Change Object Actions

These flags are used to indicate the action that has been applied to the object that has changed:

Definition Description

FACTION_ADDED File was added to the system.

FACTION_REMOVED File was removed from the system.

FACTION_MODIFIED File was modified.

FACTION_RENAMED_OLD_NAME Old name of a file which was renamed.

FACTION_RENAMED_NEW_NAME New name of a file which was renamed.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 178/187 www.hcc-embedded.com

Directory Entry Attributes

Directory entries, meta-description elements for files and directories, can have attributes assigned to
them. These are detailed in the table below.

Attribute Description

F_ATTR_ARC An archived file or directory.

F_ATTR_DIR A directory.

F_ATTR_VOLUME A volume.

F_ATTR_SYSTEM A system file or directory.

F_ATTR_HIDDEN A hidden file or directory.

F_ATTR_READONLY A read-only file or directory.

Format Type

These definitions are used to specify how a drive should be formatted:

Definition Description

F_FAT12_MEDIA Format as FAT12.

F_FAT16_MEDIA Format as FAT16.

F_FAT32_MEDIA Format as FAT32.

System Indicator

These definitions indicate the type of the partition.

Definition Description

F_SYSIND_DOSFAT12 A standard FAT12 partition.

F_SYSIND_DOSFAT16UPTO32MB A FAT16 partition of less than or equal to 32MB.

F_SYSIND_DOSFAT16OVER32MB A FAT16 partition that is over 32MB in size.

F_SYSIND_DOSFAT32 A standard FAT32 partition.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 179/187 www.hcc-embedded.com

cdate Definitions

The cdate definitions are as follows:

Element Value Description

F_CDATE_DAY_SHIFT 0 The day shift.

F_CDATE_DAY_MASK 0x001F 0-31.

F_CDATE_MONTH_SHIFT 5 The month shift.

F_CDATE_MONTH_MASK 0x01E0 1-12.

F_CDATE_YEAR_SHIFT 9 The year shift.

F_CDATE_YEAR_MASK 0xFE00 0-119 (1980+value).

ctime Definitions

The ctime definitions are as follows:

Element Value Description

F_CTIME_SEC_SHIFT 0 The second shift.

F_CTIME_SEC_MASK 0x001F 0-30 in 2 second intervals.

F_CTIME_MIN_SHIFT 5 The minute shift.

F_CTIME_MIN_MASK 0x07E0 0-59.

F_CTIME_HOUR_SHIFT 11 The hour shift.

F_CTIME_HOUR_MASK 0xF800 0-23.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 180/187 www.hcc-embedded.com

t_dir_walk_cb_fn

This typedef defines the callback function used by f_dir_walk().

For a code example, see f_dir_walk().

Format

typedef int t_dir_walk_cb_fn (
 F_FIND * p_find,
 uint16_t depth,
 void * p_user_data)

Arguments

Argument Description Type

p_find A pointer to the structure used by findfirst()/findnext(). F_FIND *

depth The directory depth, counted from the base directory. uint16_t

p_user_data A pointer to the user's data. void *

Return values

Return value Description

0 Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 181/187 www.hcc-embedded.com

t_wdir_walk_cb_fn

This typedef defines the callback function used by f_wdir_walk().

For a code example, see f_wdir_walk().

Format

typedef int t_wdir_walk_cb_fn (
 F_WFIND * p_find,
 uint16_t depth,
 void * p_user_data)

Arguments

Argument Description Type

p_find A pointer to the structure used by f_wfindfirst()/f_wfindnext(). F_WFIND *

depth The directory depth, counted from the base directory. uint16_t

p_user_data A pointer to the user's data. void *

Return values

Return value Description

0 Successful execution.

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 182/187 www.hcc-embedded.com

t_volume_clean_stage_type
The t_volume_clean_stage_type typedef is used by the callback t_volume_clean_cb_fn() to report
progress from f_volume_clean(). See the description of the callback for a description of the total and
cmplt parameters.

There are four stages:

Stage Description

 VOLUME_CLEAN_STAGE_METADATA = 0 total and cmplt will be valid. Directory entries and files are
cleaned in this stage.

VOLUME_CLEAN_STAGE_FREE_SPACE total and cmplt will be valid. Unused clusters are cleaned in
this stage.

VOLUME_CLEAN_STAGE_BACKEND Progress will not be known so total and cmplt will be 0. IOCTL
flush is used in this stage.

VOLUME_CLEAN_STAGE_COMPLETE total and cmplt will be 0.

t_volume_clean_cb_fn
The callback function t_volume_clean_cb_fn() is used by f_volume_clean().

Format

typedef int t_volume_clean_cb_fn (
 void * p_user_data,
 t_volume_clean_stage_type stage,
 uint32_t total,
 uint32_t cmplt)

Arguments

Argument Description Type

p_user_data A pointer to the user's data. void *

stage The current stage of the clean.

total The total number of items that will be processed during the current stage.

cmplt The number of items processed so far during current stage.

Return values

Return value Description

0 Successful execution..

Else See Error Codes.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 183/187 www.hcc-embedded.com

8. Integration
This section describes all aspects of the file system that require integration with your target project.

This includes porting and configuration of external resources.

8.1. OS Abstraction Layer
The module uses the OS Abstraction Layer (OAL) that allows it to run seamlessly with a wide variety of
RTOSes, or without an RTOS.

The file system uses the following OAL components:

OAL Resource Number required if
FN_MAXTASK is 1

Number required if
FN_MAXTASK > 1

Tasks 0 0

Mutexes 0 1 + FAT_MAXVOLUME

Events 0 0

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 184/187 www.hcc-embedded.com

Configuring the OAL

Configure the OAL by using the file config_oal_os.h. Do the following:

Define OAL_TASK_GET_ID_SUPPORTED and OAL_MUTEX_SUPPORTED.1.
Set the OAL_MUTEX_COUNT in config_oal_os.h to FN_MAXVOLUMES+1.2.

Multiple Tasks, Mutexes and Reentrancy
Note: If your system has multiple tasks that access the file system, you must implement this section.

Each volume should be protected by a mutex mechanism to ensure that file access is safe. A reentrancy
wrapper is included in fat_m.c. The reentrancy wrapper routines call mutex routines contained in the OAL.

If reentrancy is required, the following functions from the OAL are used:

oal_mutex_create() – called on volume init/delete and also on file system init/delete.
oal_mutex_delete() – called on volume init/delete and also on file system init/delete.
oal_mutex_get() – called when a mutex is required.
oal_mutex_put() – called when the mutex is released.

Within the standard API there is no support for the current working directory (cwd) to be maintained on a
per-caller basis. By default the system provides a single cwd that can be changed by any user. The cwd is
maintained on a per-volume basis, or on a per-task basis if reentrancy is implemented.

For a multitasking system, you must do the following:

Set FN_MAXTASK to the maximum number of tasks that can simultaneously maintain access to the1.
file system. This effectively creates a table of cwds for each task.
Modify the function oal_task_get_id() to get a unique identifier for the calling task.2.
Ensure that any task using the file system calls f_enterFS() before using any other API calls; this3.
ensures that the calling task is registered and the current working directory can be maintained for it.
Ensure that any application using the file system calls f_releaseFS() with its unique identifier to4.
free that table entry for use by other applications.

Once this is done, each caller is logged as it acquires the mutex, and a current working directory is
associated with it. The caller must release this when it has finished using the file system; that is, when the
calling task is terminated. This frees the entry for use by other tasks.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 185/187 www.hcc-embedded.com

8.2. PSP Porting
The Platform Support Package (PSP) is designed to hold all platform-specific functionality, either because it
relies on specific features of a target system, or because this provides the most efficient or flexible
solution for the developer.

The module makes use of the following standard PSP functions:

Function Package Element Description

psp_getcurrenttimedate() psp_base psp_rtc Returns the current time and date. This is used for
date and time-stamping files.

psp_getrand() psp_base psp_rand Generates a random number. This is used for the
volume serial number.

psp_memcpy() psp_base psp_string Copies a block of memory. The result is a binary
copy of the data.

psp_memset() psp_base psp_string Sets the specified area of memory to the defined
value.

If USE_MALLOC is defined, the module also makes use of the following functions:

Function Package Element Description

psp_free() psp_base psp_alloc Deallocates a block of memory allocated by psp_malloc(), making
it available for further allocation.

psp_malloc() psp_base psp_alloc Allocates a block of memory, returning a pointer to the beginning
of the block.

The module makes use of the following standard PSP macros:

Macro Package Element Description

PSP_RD_LE16 psp_base psp_endianness Reads a 16 bit value stored as little-endian from a memory
location.

PSP_RD_LE32 psp_base psp_endianness Reads a 32 bit value stored as little-endian from a memory
location.

PSP_WR_LE16 psp_base psp_endianness Writes a 16 bit value to be stored as little-endian to a
memory location.

PSP_WR_LE32 psp_base psp_endianness Writes a 32 bit value to be stored as little-endian to a
memory location.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 186/187 www.hcc-embedded.com

Get Time and Date

For compatibility with other systems, you must provide a real-time function so that files can be time-
stamped and date-stamped.

A pseudo time/date function, psp_getcurrenttimedate(), is provided in psp_rtc.c. Modify this to provide
the time in standard format from a Real-Time Clock source (RTC).

Random Number

The psp_rand.c file contains a function psp_getrand() that the file system uses to obtain a pseudo-
random number to use as the volume serial number. This function is required only if a hard-format of a
device is required.

It is recommended that you replace this routine with a random function from the base system, or
alternatively generate a random number based on a combination of the system time and date and a
system constant such as a MAC address.

FAT and SafeFAT File System User Guide

Copyright HCC Embedded 2020 187/187 www.hcc-embedded.com

9. Version
Version 5.30

For use with FAT and SafeFAT versions 9.1 and above

	Table of Contents
	1. System Overview
	1.1. Introduction
	1.2. Feature Check
	1.3. Packages and Documents
	1.4. Change History

	2. File Encryption
	3. About SafeFAT
	3.1. File Synchronization
	3.2. Operation and FAT Compatibility
	3.3. Lower Layer Requirements
	3.4. Improving Performance

	4. Source File List
	5. Configuration Options
	5.1. config_fat.h
	General Options
	File Names
	Other File Options
	Volume Definitions
	Sector Size
	Caching
	Encryption

	5.2. config_fat.c

	6. Other File System Information
	6.1. System Requirements
	6.2. Stack Requirements
	6.3. Real-Time Requirements
	6.4. Drives, Partitions and Volumes
	6.5. Drive Format
	6.6. Cache Setup and Options
	6.7. Use of Wildcards

	7. Application Programming Interface
	7.1. Module Management
	fs_init
	fs_start
	fs_stop
	fs_delete

	7.2. File System API
	General Management
	f_enterFS
	f_releaseFS
	f_getlasterror

	Volume Management
	f_initvolume
	f_initvolume_nonsafe
	f_delvolume
	f_checkvolume
	f_repair
	f_setvolname
	f_getvolname
	f_get_oem
	f_get_volume_count
	f_get_volume_list
	f_initvolumepartition
	f_initvolumepartition_nonsafe
	f_format
	f_createpartition
	f_createpartition_align
	f_getpartition
	f_createdriver
	f_releasedriver
	f_chdrive
	f_getdrive
	f_getfreespace
	f_getlabel
	f_setlabel
	f_get_cluster_size
	f_volume_clean

	Directory Management
	f_mkdir
	f_chdir
	f_rmdir
	f_getcwd
	f_getdcwd

	File Access
	f_open
	f_open_enc
	f_open_nonsafe
	f_close
	f_abortclose
	f_flush
	f_read
	f_write
	f_getc
	f_putc
	f_eof
	f_seteof
	f_tell
	f_seek
	f_rewind
	f_truncate
	f_ftruncate

	File Management
	f_delete
	f_deletecontent
	f_findfirst
	f_findnext
	f_move
	f_rename
	f_getattr
	f_setattr
	f_gettimedate
	f_settimedate
	f_stat
	f_fstat
	f_filelength
	f_dir_walk
	f_disk_usage

	7.3. File System Unicode API
	Unicode Directory Management
	f_wmkdir
	f_wchdir
	f_wrmdir
	f_wgetcwd
	f_wgetdcwd

	Unicode File Access
	f_wopen
	f_wopen_nonsafe
	f_wtruncate

	Unicode File Management
	f_wdelete
	f_wdeletecontent
	f_wfindfirst
	f_wfindnext
	f_wmove
	f_wrename
	f_wgetattr
	f_wsetattr
	f_wgettimedate
	f_wsettimedate
	f_wstat
	f_wfilelength
	f_wdir_walk

	Unicode Translation
	f_set_ascii_to_unicode
	f_set_unicode_to_ascii

	7.4. Error Codes
	7.5. Types and Definitions
	W_CHAR: Character and Wide Character Definition
	F_FILE: File Handle
	F_FIND
	F_WFIND
	F_SPACE
	F_PARTITION
	F_STAT Structure
	ST_FILE_CHANGED
	Change Object Flags
	Change Object Actions
	Directory Entry Attributes
	Format Type
	System Indicator
	cdate Definitions
	ctime Definitions
	t_dir_walk_cb_fn
	t_wdir_walk_cb_fn
	t_volume_clean_stage_type
	t_volume_clean_cb_fn

	8. Integration
	8.1. OS Abstraction Layer
	Configuring the OAL
	Multiple Tasks, Mutexes and Reentrancy

	8.2. PSP Porting
	Get Time and Date
	Random Number

	9. Version

